BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29795996)

  • 1. Acrylamide Mitigation in Fried Kochchi Kesel Chips Using Free and Immobilized Fungal Asparaginase.
    Ravi A; Gurunathan B
    Food Technol Biotechnol; 2018 Mar; 56(1):51-57. PubMed ID: 29795996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview on mitigation of acrylamide in starchy fried and baked foods.
    Baskar G; Aiswarya R
    J Sci Food Agric; 2018 Sep; 98(12):4385-4394. PubMed ID: 29572830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis.
    Onishi Y; Prihanto AA; Yano S; Takagi K; Umekawa M; Wakayama M
    3 Biotech; 2015 Oct; 5(5):783-789. PubMed ID: 28324531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules.
    Liu C; Luo L; Lin Q
    J Food Biochem; 2019 Mar; 43(3):e12756. PubMed ID: 31353561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of asparaginase on acrylamide formation in French fries.
    Pedreschi F; Kaack K; Granby K
    Food Chem; 2008 Jul; 109(2):386-92. PubMed ID: 26003362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation effect of sodium alginate on acrylamide formation in fried potato chips system based on response surface methodology.
    Liu H; Li X; Yuan Y
    J Food Sci; 2020 Aug; 85(8):2615-2621. PubMed ID: 32691421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylamide mitigation in foods using recombinant L-asparaginase: An extremozyme from Himalayan Pseudomonas sp. PCH182.
    Patial V; Kumar V; Joshi R; Gupta M; Singh D
    Food Res Int; 2022 Dec; 162(Pt A):111936. PubMed ID: 36461280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model.
    Kukurová K; Morales FJ; Bednáriková A; Ciesarová Z
    Mol Nutr Food Res; 2009 Dec; 53(12):1532-9. PubMed ID: 19824015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system.
    Alam S; Ahmad R; Pranaw K; Mishra P; Khare SK
    Bioresour Technol; 2018 Dec; 269():121-126. PubMed ID: 30157443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6.
    Farahat MG; Amr D; Galal A
    Int J Biol Macromol; 2020 Jan; 143():685-695. PubMed ID: 31759010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips.
    Chi H; Xia B; Shen J; Zhu X; Lu Z; Lu F; Zhu P
    Int J Biol Macromol; 2022 Nov; 221():1384-1393. PubMed ID: 36130640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying high-risk factors and mitigation strategies for acrylamide formation in air-fried lotus root chips: Impact of cooking parameters, including temperature, time, presoaking, and seasoning.
    Lee HW; Baek CH; Ma Y; Lee J; Moon B; Lee KW; Jung MY
    J Food Sci; 2024 Mar; 89(3):1473-1484. PubMed ID: 38258947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae.
    Hendriksen HV; Kornbrust BA; Østergaard PR; Stringer MA
    J Agric Food Chem; 2009 May; 57(10):4168-76. PubMed ID: 19388639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cooking method (baking compared with frying) on acrylamide level of potato chips.
    Palazoğlu TK; Savran D; Gökmen V
    J Food Sci; 2010; 75(1):E25-9. PubMed ID: 20492162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of L-asparaginase on magnetic nanoparticles: Kinetics and functional characterization and applications.
    Alam S; Nagpal T; Singhal R; Kumar Khare S
    Bioresour Technol; 2021 Nov; 339():125599. PubMed ID: 34303095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylamide mitigation and 2,4-decadienal elimination in potato-crisps using L-proline accompanied by modified processing conditions.
    Bose A; Bhattacharjee P
    J Food Sci Technol; 2023 Mar; 60(3):925-937. PubMed ID: 36908368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of consumer food preparation on acrylamide formation.
    Jackson LS; Al-Taher F
    Adv Exp Med Biol; 2005; 561():447-65. PubMed ID: 16438318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of L-asparaginase from Streptomyces koyangensis SK4 with acrylamide-minimizing potential in potato chips.
    Shahana Kabeer S; Francis B; Vishnupriya S; Kattatheyil H; Joseph KJ; Krishnan KP; Mohamed Hatha AA
    Braz J Microbiol; 2023 Sep; 54(3):1645-1654. PubMed ID: 37036659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative food matrices for snack formulations in terms of acrylamide formation and mitigation.
    Mesías M; Delgado-Andrade C; Morales FJ
    J Sci Food Agric; 2019 Mar; 99(4):2048-2051. PubMed ID: 30204246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain improvement, artificial intelligence optimization, and sensitivity analysis of asparaginase-mediated acrylamide reduction in sweet potato chips.
    Akwagiobe E; Ekpenyong M; Asitok A; Amenaghawon A; Ubi D; Ikharia E; Kusuma H; Antai S
    J Food Sci Technol; 2023 Sep; 60(9):2358-2369. PubMed ID: 37424578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.