These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29796086)

  • 41. Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes.
    Kim DG; Yoo SW; Kim M; Ko JK; Um Y; Oh MK
    Bioresour Technol; 2020 Aug; 309():123386. PubMed ID: 32330805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production.
    Wang Q; Chen T; Zhao X; Chamu J
    Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of (2R, 3R)-2,3-butanediol using engineered
    Yang Z; Zhang Z
    Biotechnol Biofuels; 2018; 11():35. PubMed ID: 29449883
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.
    Białkowska AM; Gromek E; Krysiak J; Sikora B; Kalinowska H; Jędrzejczak-Krzepkowska M; Kubik C; Lang S; Schütt F; Turkiewicz M
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1609-21. PubMed ID: 26445877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
    Park JM; Song H; Lee HJ; Seung D
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1057-66. PubMed ID: 23779220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scale-up of naringinase production process based on the constant oxygen transfer rate for a novel strain of Bacillus methylotrophicus.
    Raval K; Gehlot K; B D P
    Prep Biochem Biotechnol; 2017 Feb; 47(2):192-198. PubMed ID: 27340886
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1419-25. PubMed ID: 26275527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Introducing substrate limitations to overcome catabolite repression in a protease producing Bacillus licheniformis strain using membrane-based fed-batch shake flasks.
    Habicher T; John A; Scholl N; Daub A; Klein T; Philip P; Büchs J
    Biotechnol Bioeng; 2019 Jun; 116(6):1326-1340. PubMed ID: 30712275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a semi-continuous two-stage simultaneous saccharification and fermentation process for enhanced 2,3-butanediol production by Klebsiella oxytoca.
    Moon SK; Kim DK; Park JM; Min J; Song H
    Lett Appl Microbiol; 2018 Apr; 66(4):300-305. PubMed ID: 29315769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production.
    Wang A; Wang Y; Jiang T; Li L; Ma C; Xu P
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):965-70. PubMed ID: 20376634
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of Molasses and Soybean Meal Content to Enhance Tetramethylpyrazine Yield by
    Li Y; Gan S; Luo L; Yang W; Mo L; Shang C
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses).
    Srivastava AK; Tripathi AD; Jha A; Poonia A; Sharma N
    J Food Sci Technol; 2015 Jun; 52(6):3571-8. PubMed ID: 26028739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering Bacillus licheniformis as industrial chassis for efficient bioproduction from starch.
    Zhu J; Liu M; Kang J; Wang S; Zha Z; Zhan Y; Wang Z; Li J; Cai D; Chen S
    Bioresour Technol; 2024 Jul; ():131061. PubMed ID: 38960005
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering
    Li C; Gai Z; Wang K; Jin L
    Biotechnol Biofuels; 2017; 10():235. PubMed ID: 29046721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimizing the production of the biosurfactant lichenysin and its application in biofilm control.
    Coronel-León J; Marqués AM; Bastida J; Manresa A
    J Appl Microbiol; 2016 Jan; 120(1):99-111. PubMed ID: 26519210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Agro-Industrial Wastes for Production of Biosurfactant by
    Rane AN; Baikar VV; Ravi Kumar V; Deopurkar RL
    Front Microbiol; 2017; 8():492. PubMed ID: 28392783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of 2,3-butanediol by newly isolated Enterobacter cloacae.
    Saha BC; Bothast RJ
    Appl Microbiol Biotechnol; 1999 Sep; 52(3):321-6. PubMed ID: 10531643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses.
    Deshmukh AN; Nipanikar-Gokhale P; Jain R
    Appl Biochem Biotechnol; 2016 May; 179(2):321-31. PubMed ID: 26825987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.