These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29796087)

  • 1. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion.
    Zhuo S; Yan X; Liu D; Si M; Zhang K; Liu M; Peng B; Shi Y
    Biotechnol Biofuels; 2018; 11():146. PubMed ID: 29796087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization.
    Liu D; Yan X; Zhuo S; Si M; Liu M; Wang S; Ren L; Chai L; Shi Y
    Bioresour Technol; 2018 Jun; 257():62-68. PubMed ID: 29482167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion.
    Kong W; Fu X; Wang L; Alhujaily A; Zhang J; Ma F; Zhang X; Yu H
    Biotechnol Biofuels; 2017; 10():218. PubMed ID: 28924453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus.
    Yan K; Liu F; Chen Q; Ke M; Huang X; Hu W; Zhou B; Zhang X; Yu H
    Biotechnol Biofuels; 2016; 9():76. PubMed ID: 27034714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.
    Zhang K; Si M; Liu D; Zhuo S; Liu M; Liu H; Yan X; Shi Y
    Biotechnol Biofuels; 2018; 11():31. PubMed ID: 29445420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of enzymatic pretreatment on corn stover degradation and biogas production.
    Schroyen M; Vervaeren H; Van Hulle SWH; Raes K
    Bioresour Technol; 2014 Dec; 173():59-66. PubMed ID: 25285760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derived high reducing sugar and lignin colloid particles from corn stover.
    Liu W; Zhuo S; Si M; Yuan M; Shi Y
    BMC Chem; 2020 Dec; 14(1):72. PubMed ID: 33303003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure.
    Qin L; Li WC; Zhu JQ; Liang JN; Li BZ; Yuan YJ
    Biotechnol Biofuels; 2015; 8():174. PubMed ID: 26516347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary effect of combined bacterial-chemical pretreatment to promote enzymatic digestibility of lignocellulose biomass.
    Si M; Liu D; Liu M; Yan X; Gao C; Chai L; Shi Y
    Bioresour Technol; 2019 Jan; 272():275-280. PubMed ID: 30359881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose.
    Fu X; Zhang J; Gu X; Yu H; Chen S
    Biotechnol Biofuels; 2021 Sep; 14(1):176. PubMed ID: 34488855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corn stover induces extracellular laccase activity in Didymosphaeria sp. (syn. = Paraconiothyrium sp.) and exhibits increased in vitro ruminal digestibility when treated with this fungal species.
    Arredondo-Santoyo M; Herrera-Camacho J; Vázquez-Garcidueñas MS; Vázquez-Marrufo G
    Folia Microbiol (Praha); 2020 Oct; 65(5):849-861. PubMed ID: 32372279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Features correlated to improved enzymatic digestibility of corn stover subjected to alkaline hydrogen peroxide pretreatment.
    Yang L; Ru Y; Xu S; Liu T; Tan L
    Bioresour Technol; 2021 Apr; 325():124688. PubMed ID: 33472126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment.
    Zheng Y; Yu Y; Lin W; Jin Y; Yong Q; Huang C
    Bioresour Technol; 2021 Apr; 325():124691. PubMed ID: 33461121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering lignocellulose deconstruction by the white rot fungus
    Qin X; Su X; Luo H; Ma R; Yao B; Ma F
    Biotechnol Biofuels; 2018; 11():58. PubMed ID: 29507610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline twin-screw extrusion pretreatment for fermentable sugar production.
    Liu C; van der Heide E; Wang H; Li B; Yu G; Mu X
    Biotechnol Biofuels; 2013; 6():97. PubMed ID: 23834726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol.
    Ding C; Wang X; Li M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5641-5652. PubMed ID: 31115636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Screened Lignin-degrading Fungi for the Biological Pretreatment of Corn Stover.
    Su Y; Yu X; Sun Y; Wang G; Chen H; Chen G
    Sci Rep; 2018 Mar; 8(1):5385. PubMed ID: 29599465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.