These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2979641)

  • 1. Chronic clorgyline treatment of Syrian hamsters: an analysis of effects on the circadian pacemaker.
    Duncan WC; Tamarkin L; Sokolove PG; Wehr TA
    J Biol Rhythms; 1988; 3(4):305-22. PubMed ID: 2979641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of the activity-rest cycle by MAOI treatment: dependence on light and a secondary visual pathway to the circadian pacemaker.
    Duncan WC; Johnson KA; Sutin E; Wehr TA
    Brain Res Bull; 1998 Mar; 45(5):457-65. PubMed ID: 9570715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of clorgyline (a MAO type A inhibitor) on locomotor activity in the Syrian hamster.
    Tamarkin L; Craig CJ; Garrick NA; Wehr TA
    Am J Physiol; 1983 Aug; 245(2):R215-21. PubMed ID: 6881380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased sensitivity to light of the photic entrainment pathway during chronic clorgyline and lithium treatments.
    Duncan WC; Johnson KA; Wehr TA
    J Biol Rhythms; 1998 Aug; 13(4):330-46. PubMed ID: 9711508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal variations of serotonin and dopamine levels in discrete brain regions of Syrian hamsters and their modification by chronic clorgyline treatment.
    Ozaki N; Duncan WC; Johnson KA; Wehr TA
    Brain Res; 1993 Nov; 627(1):41-8. PubMed ID: 8293303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antidepressant and depressogenic drugs lack consistent effects on hamster circadian rhythms.
    Klemfuss H; Kripke DF
    Psychiatry Res; 1994 Aug; 53(2):173-84. PubMed ID: 7824677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-HT agonist-induced phase-advances of the circadian pacemaker are diminished by chronic antidepressant drug treatment.
    Duncan WC; Johnson KA; Wehr TA
    Brain Res; 1999 Jan; 815(1):126-30. PubMed ID: 9974132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian clock resetting by sleep deprivation without exercise in Syrian hamsters: dark pulses revisited.
    Mistlberger RE; Belcourt J; Antle MC
    J Biol Rhythms; 2002 Jun; 17(3):227-37. PubMed ID: 12054194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms.
    Gannon RL; Garcia DA; Millan MJ
    Eur Neuropsychopharmacol; 2014 Jun; 24(6):964-73. PubMed ID: 24388152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminance coding properties of intergeniculate leaflet neurons in the golden hamster and the effects of chronic clorgyline.
    Harrington ME; Rusak B
    Brain Res; 1991 Jul; 554(1-2):95-104. PubMed ID: 1933321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters.
    Mistlberger RE; Webb IC; Simon MM; Tse D; Su C
    J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of thyroid state, MAOI drug treatment, and light on the level and circadian pattern of wheel-running in rats.
    Duncan WC; Schull J
    Biol Psychiatry; 1994 Mar; 35(5):324-34. PubMed ID: 8011801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic ethanol intake modulates photic and non-photic circadian phase responses in the Syrian hamster.
    Seggio JA; Logan RW; Rosenwasser AM
    Pharmacol Biochem Behav; 2007; 87(3):297-305. PubMed ID: 17544066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of imipramine on circadian rhythms in the golden hamster.
    Refinetti R; Menaker M
    Pharmacol Biochem Behav; 1993 May; 45(1):27-33. PubMed ID: 8516369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoamine depletion alters the entrainment and the response to light of the circadian activity rhythm in hamsters.
    Penev PD; Turek FW; Zee PC
    Brain Res; 1993 May; 612(1-2):156-64. PubMed ID: 8330195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NK1 receptor antagonist affects the circadian regulation of locomotor activity in golden hamsters.
    Challet E; Naylor E; Metzger JM; MacIntyre DE; Turek FW
    Brain Res; 1998 Jul; 800(1):32-9. PubMed ID: 9685577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol and circadian rhythms in the Syrian hamster: effects on entrained phase, reentrainment rate, and period.
    Mistlberger RE; Nadeau J
    Pharmacol Biochem Behav; 1992 Sep; 43(1):159-65. PubMed ID: 1409799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clorgyline-induced reduction in body temperature and its relationship to vigilance states in Syrian hamsters.
    Gao B; Duncan WC; Wehr TA
    Neuropsychopharmacology; 1991 May; 4(3):187-97. PubMed ID: 2064718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.