These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29796452)

  • 41. Spatial-temporal modelling of bacterial colony growth on solid media.
    Pipe LZ; Grimson MJ
    Mol Biosyst; 2008 Mar; 4(3):192-8. PubMed ID: 18437261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of an insoluble surfactant on the dynamics of a thin liquid film flowing over a non-uniformly heated substrate.
    Srivastava A; Tiwari N
    Eur Phys J E Soft Matter; 2018 May; 41(5):56. PubMed ID: 29730809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of adsorption kinetics on the rate of surfactant-enhanced spreading.
    Kovalchuk NM; Matar OK; Craster RV; Miller R; Starov VM
    Soft Matter; 2016 Jan; 12(4):1009-13. PubMed ID: 26610693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface free energy of the human skin and its critical surface tension of wetting in the skin/surfactant aqueous solution/air system.
    Krawczyk J
    Skin Res Technol; 2015 May; 21(2):214-23. PubMed ID: 25123912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Degradation of a commercial surface-active agent, in the presence of a complementary source of carbon, by a selected bacterial colony in a marine environment].
    Sigoillot JC; Nguyen MH
    Can J Microbiol; 1987 Oct; 33(10):929-32. PubMed ID: 3690420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.
    Karapetsas G; Sahu KC; Sefiane K; Matar OK
    Langmuir; 2014 Apr; 30(15):4310-21. PubMed ID: 24694047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of bio-surfactant on municipal solid waste composting process.
    Xi BD; Liu HL; Huang GH; Zhang BY; Qin XS
    J Environ Sci (China); 2005; 17(3):409-13. PubMed ID: 16083113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures.
    Matar OK; Troian SM
    Chaos; 1999 Mar; 9(1):141-153. PubMed ID: 12779808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soluble surfactant spreading: How the amphiphilicity sets the Marangoni hydrodynamics.
    Le Roux S; Roché M; Cantat I; Saint-Jalmes A
    Phys Rev E; 2016 Jan; 93(1):013107. PubMed ID: 26871155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of aqueous polymeric surfactants on silicone-hydrogel soft- contact-lens wettability and bacterial adhesion of Pseudomonas aeruginosa.
    Tran VB; Sung YS; Copley K; Radke CJ
    Cont Lens Anterior Eye; 2012 Aug; 35(4):155-62. PubMed ID: 22456099
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spreading of exogenous surfactant in an airway.
    Espinosa FF; Shapiro AH; Fredberg JJ; Kamm RD
    J Appl Physiol (1985); 1993 Nov; 75(5):2028-39. PubMed ID: 8307856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of anionic surfactant and short-chain alcohol mixtures on adsorption at quartz/water and water/air interfaces and the wettability of quartz.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2011 Feb; 354(1):396-404. PubMed ID: 21055764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active modulation of surfactant-driven flow instabilities by swarming bacteria.
    Kotian HS; Abdulla AZ; Hithysini KN; Harkar S; Joge S; Mishra A; Singh V; Varma MM
    Phys Rev E; 2020 Jan; 101(1-1):012407. PubMed ID: 32069638
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Front structure and dynamics in dense colonies of motile bacteria: Role of active turbulence.
    Chatterjee R; Joshi AA; Perlekar P
    Phys Rev E; 2016 Aug; 94(2-1):022406. PubMed ID: 27627334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the effect of pH on spreading of surfactant solutions on hydrophobic surfaces.
    Radulovic J; Sefiane K; Shanahan ME
    J Colloid Interface Sci; 2009 Apr; 332(2):497-504. PubMed ID: 19185880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Theoretical Study of Instabilities at the Advancing Front of Thermally Driven Coating Films.
    Kataoka DE; Troian SM
    J Colloid Interface Sci; 1997 Aug; 192(2):350-62. PubMed ID: 9367557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spreading of Surfactant Solutions over Hydrophobic Substrates.
    Starov VM; Kosvintsev SR; Velarde MG
    J Colloid Interface Sci; 2000 Jul; 227(1):185-190. PubMed ID: 10860610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions.
    Stetten AZ; Moraca G; Corcoran TE; Tristram-Nagle S; Garoff S; Przybycien TM; Tilton RD
    J Colloid Interface Sci; 2016 Dec; 484():270-278. PubMed ID: 27623189
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wettability of a glass surface in the presence of two nonionic surfactant mixtures.
    Szymczyk K; Jańczuk B
    Langmuir; 2008 Aug; 24(15):7755-60. PubMed ID: 18572957
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion.
    Be'er A; Smith RS; Zhang HP; Florin EL; Payne SM; Swinney HL
    J Bacteriol; 2009 Sep; 191(18):5758-64. PubMed ID: 19617369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.