BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29796722)

  • 1. Acute ecotoxicity bioassay using Dendrocephalus brasiliensis: alternative test species for monitoring of contaminants in tropical and subtropical freshwaters.
    Santos VSV; Campos CF; de Campos Júnior EO; Pereira BB
    Ecotoxicology; 2018 Aug; 27(6):635-640. PubMed ID: 29796722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotoxicological assessment of synthetic and biogenic surfactants using freshwater cladoceran species.
    Santos VSV; Silveira E; Pereira BB
    Chemosphere; 2019 Apr; 221():519-525. PubMed ID: 30660908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute toxicity tests with the tropical cladoceran Pseudosida ramosa: The importance of using native species as test organisms.
    Freitas EC; Rocha O
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):241-9. PubMed ID: 20464548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute effects of Anabaena spiroides extract and paraoxon-methyl on freshwater cladocerans from tropical and temperate regions: links between the ChE activity and survival and its implications for tropical ecotoxicological studies.
    Freitas EC; Printes LB; Rocha O
    Aquat Toxicol; 2014 Jan; 146():105-14. PubMed ID: 24291085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute sensitivity of the vernal pool fairy shrimp, Branchinecta lynchi (Anostraca; Branchinectidae), and surrogate species to 10 chemicals.
    Ivey CD; Besser JM; Ingersoll CG; Wang N; Rogers DC; Raimondo S; Bauer CR; Hammer EJ
    Environ Toxicol Chem; 2017 Mar; 36(3):797-806. PubMed ID: 28019706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics.
    Daam MA; Rico A
    Environ Sci Pollut Res Int; 2018 May; 25(14):13235-13243. PubMed ID: 27530199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress.
    Jaikumar G; Baas J; Brun NR; Vijver MG; Bosker T
    Environ Pollut; 2018 Aug; 239():733-740. PubMed ID: 29723823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of the sensitivity of Daphnia galeata and Daphnia magna to heavy metals.
    Cui R; Kwak JI; An YJ
    Ecotoxicol Environ Saf; 2018 Oct; 162():63-70. PubMed ID: 29966939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daphnia magna and Ceriodaphnia dubia Have Similar Sensitivity in Standard Acute and Chronic Toxicity Tests.
    Connors KA; Brill JL; Norberg-King T; Barron MG; Carr G; Belanger SE
    Environ Toxicol Chem; 2022 Jan; 41(1):134-147. PubMed ID: 34918372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of lead and mancozeb differs in two monophyletic Daphnia species.
    Araujo GS; Pinheiro C; Pestana JLT; Soares AMVM; Abessa DMS; Loureiro S
    Ecotoxicol Environ Saf; 2019 Aug; 178():230-238. PubMed ID: 31026744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid screening for ecotoxicity of plating and semiconductor wastewater employing the heartbeat of Daphnia magna.
    Park S; Jo A; Choi J; Kim J; Zoh KD; Choi K
    Ecotoxicol Environ Saf; 2019 Dec; 186():109721. PubMed ID: 31593825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute and chronic toxicity of chromium and cadmium to the tropical cladoceran pseudosida ramosa and the implications for ecotoxicological studies.
    Freitas EC; Rocha O
    Environ Toxicol; 2014 Feb; 29(2):176-86. PubMed ID: 22038926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic toxicity of chlordane to Daphnia magna and Ceriodaphnia dubia: a comparative study.
    Manar R; Vasseur P; Bessi H
    Environ Toxicol; 2012 Feb; 27(2):90-7. PubMed ID: 20607811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata.
    Croce R; Cinà F; Lombardo A; Crispeyn G; Cappelli CI; Vian M; Maiorana S; Benfenati E; Baderna D
    Ecotoxicol Environ Saf; 2017 Oct; 144():79-87. PubMed ID: 28601520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.
    Hernández Leal L; Soeter AM; Kools SA; Kraak MH; Parsons JR; Temmink H; Zeeman G; Buisman CJ
    Water Res; 2012 Mar; 46(4):1038-44. PubMed ID: 22197265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated eutrophication and toxicity in tropical reservoir water and sediments: an ecotoxicological approach.
    Rietzler AC; Botta CR; Ribeiro MM; Rocha O; Fonseca AL
    Environ Sci Pollut Res Int; 2018 May; 25(14):13292-13311. PubMed ID: 27761862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Daphnia magna for Nanoecotoxicity Study.
    Xu Z; Liu Y; Wang Y
    Methods Mol Biol; 2019; 1894():345-352. PubMed ID: 30547472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute toxicity testing with the tropical marine copepod Acartia sinjiensis: optimisation and application.
    Gissi F; Binet MT; Adams MS
    Ecotoxicol Environ Saf; 2013 Nov; 97():86-93. PubMed ID: 23932510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative acute toxicity of glyphosate-based herbicide (GBH) to
    Huaraca LF; Chamorro SA; Hernández V; Bay-Schmith E; Villamar CA
    J Environ Sci Health B; 2020; 55(7):646-654. PubMed ID: 32432942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-, third- and fourth-generation quinolones: Ecotoxicity effects on Daphnia and Ceriodaphnia species.
    Kergaravat SV; Hernández SR; Gagneten AM
    Chemosphere; 2021 Jan; 262():127823. PubMed ID: 32777613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.