BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 29796758)

  • 1. Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic.
    Pessi IS; Pushkareva E; Lara Y; Borderie F; Wilmotte A; Elster J
    Microb Ecol; 2019 Jan; 77(1):136-147. PubMed ID: 29796758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula.
    Almela P; Casero C; Justel A; Quesada A
    FEMS Microbiol Ecol; 2022 Apr; 98(4):. PubMed ID: 35323914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic.
    Kim M; Jung JY; Laffly D; Kwon HY; Lee YK
    FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27756770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacterial community composition in Arctic soil crusts at different stages of development.
    Pushkareva E; Pessi IS; Wilmotte A; Elster J
    FEMS Microbiol Ecol; 2015 Dec; 91(12):. PubMed ID: 26564957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway).
    Mateos-Rivera A; Yde JC; Wilson B; Finster KW; Reigstad LJ; Øvreås L
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fnw038. PubMed ID: 26902803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial community succession in an unvegetated, recently deglaciated soil.
    Nemergut DR; Anderson SP; Cleveland CC; Martin AP; Miller AE; Seimon A; Schmidt SK
    Microb Ecol; 2007 Jan; 53(1):110-22. PubMed ID: 17186150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic).
    Kastovská K; Elster J; Stibal M; Santrůcková H
    Microb Ecol; 2005 Oct; 50(3):396-407. PubMed ID: 16328651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Community structure and phylogenetic analysis of cyanobacteria in cryoconite from surface of the Glacier No. 1 in the Tianshan Mountains].
    Ni X; Qi X; Gu Y; Zheng X; Dong J; Ni Y; Cheng G
    Wei Sheng Wu Xue Bao; 2014 Nov; 54(11):1256-66. PubMed ID: 25752132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial succession in a glacier foreland of the High Arctic.
    Schütte UM; Abdo Z; Bent SJ; Williams CJ; Schneider GM; Solheim B; Forney LJ
    ISME J; 2009 Nov; 3(11):1258-68. PubMed ID: 19587774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial diversity in a glacier foreland of the high Arctic.
    Schütte UM; Abdo Z; Foster J; Ravel J; Bunge J; Solheim B; Forney LJ
    Mol Ecol; 2010 Mar; 19 Suppl 1():54-66. PubMed ID: 20331770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula.
    Pessi IS; Osorio-Forero C; Gálvez EJ; Simões FL; Simões JC; Junca H; Macedo AJ
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-10. PubMed ID: 25764530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils.
    Brown SP; Jumpponen A
    Mol Ecol; 2014 Feb; 23(2):481-97. PubMed ID: 24112459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica.
    Pushkareva E; Pessi IS; Namsaraev Z; Mano MJ; Elster J; Wilmotte A
    Syst Appl Microbiol; 2018 Jul; 41(4):363-373. PubMed ID: 29452715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica.
    Bajerski F; Wagner D
    FEMS Microbiol Ecol; 2013 Jul; 85(1):128-42. PubMed ID: 23480659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China.
    Zhang B; Li R; Xiao P; Su Y; Zhang Y
    J Basic Microbiol; 2016 Mar; 56(3):308-20. PubMed ID: 26479723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism.
    Jung P; Briegel-Williams L; Schermer M; Büdel B
    Microbiologyopen; 2019 May; 8(5):e00729. PubMed ID: 30239166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineral substrate quality determines the initial soil microbial development in front of the Nordenskiöldbreen, Svalbard.
    Luláková P; Šantrůčková H; Elster J; Hanáček M; Kotas P; Meador T; Tejnecký V; Bárta J
    FEMS Microbiol Ecol; 2023 Sep; 99(10):. PubMed ID: 37660279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.
    Mapelli F; Marasco R; Rizzi A; Baldi F; Ventura S; Daffonchio D; Borin S
    Microb Ecol; 2011 Feb; 61(2):438-47. PubMed ID: 20953598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic insights into diazotrophic communities across Arctic glacier forefields.
    Nash MV; Anesio AM; Barker G; Tranter M; Varliero G; Eloe-Fadrosh EA; Nielsen T; Turpin-Jelfs T; Benning LG; Sánchez-Baracaldo P
    FEMS Microbiol Ecol; 2018 Sep; 94(9):. PubMed ID: 29901729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.
    Rime T; Hartmann M; Brunner I; Widmer F; Zeyer J; Frey B
    Mol Ecol; 2015 Mar; 24(5):1091-108. PubMed ID: 25533315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.