These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 2979685)
1. Effect of two potent calmodulin antagonists on calcium transport of brush border and basolateral vesicles from human duodenum. Stoll R; Stern H; Ruppin H; Domschke W Aliment Pharmacol Ther; 1987 Oct; 1(5):415-24. PubMed ID: 2979685 [TBL] [Abstract][Full Text] [Related]
2. Effect of the somatostatin analogue SMS 201-995 on ATP-dependent calcium transport of basolateral vesicles from human duodenum. Stoll R; Stern H; Schmidt H; Ruppin H; Domschke W Scand J Gastroenterol; 1987 Dec; 22(10):1200-4. PubMed ID: 2893447 [TBL] [Abstract][Full Text] [Related]
3. Calmodulin-mediated effects of loperamide on chloride transport by brush border membrane vesicles from human ileum. Stoll R; Ruppin H; Domschke W Gastroenterology; 1988 Jul; 95(1):69-76. PubMed ID: 2836258 [TBL] [Abstract][Full Text] [Related]
4. Calcium/calmodulin inhibition of coupled NaCl transport in membrane vesicles from rabbit ileal brush border. Fan CC; Powell DW Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5248-52. PubMed ID: 6412227 [TBL] [Abstract][Full Text] [Related]
5. Calcium uptake by brush-border and basolateral membrane vesicles in chick duodenum. Takito J; Shinki T; Sasaki T; Suda T Am J Physiol; 1990 Jan; 258(1 Pt 1):G16-23. PubMed ID: 2154121 [TBL] [Abstract][Full Text] [Related]
6. Regulation of calmodulin binding to the ATP extractable 110 kDa protein (myosin I) from chicken duodenal brush border by 1,25-(OH)2D3. Kaune R; Munson S; Bikle DD Biochim Biophys Acta; 1994 Mar; 1190(2):329-36. PubMed ID: 8142433 [TBL] [Abstract][Full Text] [Related]
7. Calcium uptake in isolated brush-border vesicles from rat small intestine. Miller A; Bronner F Biochem J; 1981 May; 196(2):391-401. PubMed ID: 6797403 [TBL] [Abstract][Full Text] [Related]
8. Role of calcium and calmodulin in the regulation of the rabbit ileal brush-border membrane Na+/H+ antiporter. Emmer E; Rood RP; Wesolek JH; Cohen ME; Braithwaite RS; Sharp GW; Murer H; Donowitz M J Membr Biol; 1989 Jun; 108(3):207-15. PubMed ID: 2550651 [TBL] [Abstract][Full Text] [Related]
9. Reduced intestinal epithelial cell brush border membrane calcium transport in spontaneously hypertensive rats. de Gooyer TE; Farrugia W; Wlodek ME J Hypertens; 1999 Jun; 17(6):777-84. PubMed ID: 10459875 [TBL] [Abstract][Full Text] [Related]
10. Alterations of duodenal vitamin D-dependent calcium-binding protein content and calcium uptake in brush border membrane vesicles in aged Wistar rats: role of 1,25-dihydroxyvitamin D3. Liang CT; Barnes J; Sacktor B; Takamoto S Endocrinology; 1991 Apr; 128(4):1780-4. PubMed ID: 2004601 [TBL] [Abstract][Full Text] [Related]
11. Rabbit ileal villus cell brush border Na+/H+ exchange is regulated by Ca2+/calmodulin-dependent protein kinase II, a brush border membrane protein. Cohen ME; Reinlib L; Watson AJ; Gorelick F; Rys-Sikora K; Tse M; Rood RP; Czernik AJ; Sharp GW; Donowitz M Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8990-4. PubMed ID: 2174171 [TBL] [Abstract][Full Text] [Related]
12. The villus gradient of brush border membrane calmodulin and the calcium-independent calmodulin-binding protein parallels that of calcium-accumulating ability. Bikle DD; Munson S Endocrinology; 1986 Feb; 118(2):727-32. PubMed ID: 3753677 [TBL] [Abstract][Full Text] [Related]
13. Relation of ATPases in rat renal brush-border membranes to ATP-driven H+ secretion. Turrini F; Sabolić I; Zimolo Z; Moewes B; Burckhardt G J Membr Biol; 1989 Jan; 107(1):1-12. PubMed ID: 2537900 [TBL] [Abstract][Full Text] [Related]
14. Distribution of Ca2+-ATPase, ATP-dependent Ca2+-transport, calmodulin and vitamin D-dependent Ca2+-binding protein along the villus-crypt axis in rat duodenum. van Corven EJ; Roche C; van Os CH Biochim Biophys Acta; 1985 Nov; 820(2):274-82. PubMed ID: 2996600 [TBL] [Abstract][Full Text] [Related]
15. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles. Schmitt C; Burckhardt G Pflugers Arch; 1993 May; 423(3-4):280-90. PubMed ID: 8321632 [TBL] [Abstract][Full Text] [Related]
16. Phosphate transport across the basolateral membrane from rat kidney cortex: sodium-dependence? Hagenbuch B; Murer H Pflugers Arch; 1986; 407 Suppl 2():S149-55. PubMed ID: 2881247 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous isolation and characterization of brush border and basolateral membrane vesicles from bovine small intestine. Wilson JW; Webb KE J Anim Sci; 1990 Feb; 68(2):583-90. PubMed ID: 2312442 [TBL] [Abstract][Full Text] [Related]
18. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport. Debiec H; Cross HS; Peterlik M J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047 [TBL] [Abstract][Full Text] [Related]
20. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine. Maenz DD; Cheeseman CI Biochim Biophys Acta; 1986 Aug; 860(2):277-85. PubMed ID: 3741853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]