BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 29796991)

  • 1. Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion.
    Nicola F; Marques MR; Odorcyk F; Petenuzzo L; Aristimunha D; Vizuete A; Sanches EF; Pereira DP; Maurmann N; Gonçalves CA; Pranke P; Netto CA
    Mol Neurobiol; 2019 Jan; 56(1):748-760. PubMed ID: 29796991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis.
    Nicola FDC; Marques MR; Odorcyk F; Arcego DM; Petenuzzo L; Aristimunha D; Vizuete A; Sanches EF; Pereira DP; Maurmann N; Dalmaz C; Pranke P; Netto CA
    Brain Res; 2017 May; 1663():95-105. PubMed ID: 28322752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective Mechanism of Stem Cells from Human Exfoliated Deciduous Teeth in Treating Spinal Cord Injury.
    Nishii T; Osuka K; Nishimura Y; Ohmichi Y; Ohmichi M; Suzuki C; Nagashima Y; Oyama T; Abe T; Kato H; Saito R
    J Neurotrauma; 2024 May; 41(9-10):1196-1210. PubMed ID: 38185837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.
    Nicola FC; Rodrigues LP; Crestani T; Quintiliano K; Sanches EF; Willborn S; Aristimunha D; Boisserand L; Pranke P; Netto CA
    Braz J Med Biol Res; 2016 Aug; 49(9):e5319. PubMed ID: 27509306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model.
    Taghipour Z; Karbalaie K; Kiani A; Niapour A; Bahramian H; Nasr-Esfahani MH; Baharvand H
    Stem Cells Dev; 2012 Jul; 21(10):1794-802. PubMed ID: 21970342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of chondroitinase ABC combined with bone marrow mesenchymal stem cells transplantation on repair of spinal cord injury in rats].
    Zhang C; He X; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):541-6. PubMed ID: 23879089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lentivirus-mediated silencing of the CTGF gene suppresses the formation of glial scar tissue in a rat model of spinal cord injury.
    Wang Y; Kong QJ; Sun JC; Yang Y; Wang HB; Zhang Q; Shi JG
    Spine J; 2018 Jan; 18(1):164-172. PubMed ID: 28089819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury.
    Sun L; Wang F; Chen H; Liu D; Qu T; Li X; Xu D; Liu F; Yin Z; Chen Y
    Cell Transplant; 2019 Jul; 28(7):893-906. PubMed ID: 31012325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury.
    Desclaux M; Perrin FE; Do-Thi A; Prieto-Cappellini M; Gimenez Y Ribotta M; Mallet J; Privat A
    J Neurosci Res; 2015 Jan; 93(1):43-55. PubMed ID: 25131829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury.
    Vitellaro-Zuccarello L; Mazzetti S; Madaschi L; Bosisio P; Fontana E; Gorio A; De Biasi S
    Neuroscience; 2008 Jan; 151(2):452-66. PubMed ID: 18065151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adipose-Derived Stem Cells Expressing the Neurogenin-2 Promote Functional Recovery After Spinal Cord Injury in Rat.
    Tang L; Lu X; Zhu R; Qian T; Tao Y; Li K; Zheng J; Zhao P; Li S; Wang X; Li L
    Cell Mol Neurobiol; 2016 Jul; 36(5):657-67. PubMed ID: 26283493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of suppressing apoptosis signal regulating kinase 1 on GFAP and vimentin expression and hindlimb mobility in rats after spinal cord injury].
    Li TZ; Yan Y; Liu Q; Xia YZ
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Jun; 35(6):795-800. PubMed ID: 26111673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway.
    Luan Y; Chen M; Zhou L
    Brain Res Bull; 2017 Jan; 128():68-75. PubMed ID: 27693649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prevascularized nerve conduit based on a stem cell sheet effectively promotes the repair of transected spinal cord injury.
    Fan Z; Liao X; Tian Y; Xuzhuzi X; Nie Y
    Acta Biomater; 2020 Jan; 101():304-313. PubMed ID: 31678739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS- RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS].
    Liao Y; Zhong D; Kang M; Yao S; Zhang Y; Yu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1009-15. PubMed ID: 26677625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury.
    Wang L; Pei S; Han L; Guo B; Li Y; Duan R; Yao Y; Xue B; Chen X; Jia Y
    Cell Physiol Biochem; 2018; 50(4):1535-1559. PubMed ID: 30376671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.