These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 29797083)
1. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Gill MA; Rafique MW; Manan T; Slaeem S; Römling U; Matin A; Ahmad I Parasitol Res; 2018 Jul; 117(7):2283-2289. PubMed ID: 29797083 [TBL] [Abstract][Full Text] [Related]
2. Type 1 Fimbriae and Motility Play a Pivotal Role During Interactions of Salmonella typhimurium with Acanthamoeba castellanii (T4 Genotype). Mannan T; Rafique MW; Bhatti MH; Matin A; Ahmad I Curr Microbiol; 2020 May; 77(5):836-845. PubMed ID: 31932998 [TBL] [Abstract][Full Text] [Related]
3. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Ahmad I; Rouf SF; Sun L; Cimdins A; Shafeeq S; Le Guyon S; Schottkowski M; Rhen M; Römling U Microb Cell Fact; 2016 Oct; 15(1):177. PubMed ID: 27756305 [TBL] [Abstract][Full Text] [Related]
4. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Gerstel U; Römling U Res Microbiol; 2003 Dec; 154(10):659-67. PubMed ID: 14643403 [TBL] [Abstract][Full Text] [Related]
5. Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Balkin AS; Plotnikov AO; Gogoleva NE; Gogolev YV; Demchenko KN; Cherkasov SV Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445780 [TBL] [Abstract][Full Text] [Related]
6. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499 [TBL] [Abstract][Full Text] [Related]
7. Balance between bacterial extracellular matrix production and intramacrophage proliferation by a Salmonella-specific SPI-2-encoded transcription factor. Echarren ML; Figueroa NR; Vitor-Horen L; Pucciarelli MG; García-Del Portillo F; Soncini FC Mol Microbiol; 2021 Oct; 116(4):1022-1032. PubMed ID: 34342063 [TBL] [Abstract][Full Text] [Related]
9. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Saldaña Z; Xicohtencatl-Cortes J; Avelino F; Phillips AD; Kaper JB; Puente JL; Girón JA Environ Microbiol; 2009 Apr; 11(4):992-1006. PubMed ID: 19187284 [TBL] [Abstract][Full Text] [Related]
10. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Simm R; Ahmad I; Rhen M; Le Guyon S; Römling U Future Microbiol; 2014; 9(11):1261-82. PubMed ID: 25437188 [TBL] [Abstract][Full Text] [Related]
11. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Zogaj X; Bokranz W; Nimtz M; Römling U Infect Immun; 2003 Jul; 71(7):4151-8. PubMed ID: 12819107 [TBL] [Abstract][Full Text] [Related]
12. Salmonella promotes virulence by repressing cellulose production. Pontes MH; Lee EJ; Choi J; Groisman EA Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5183-8. PubMed ID: 25848006 [TBL] [Abstract][Full Text] [Related]
13. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Römling U; Bokranz W; Rabsch W; Zogaj X; Nimtz M; Tschäpe H Int J Med Microbiol; 2003 Aug; 293(4):273-85. PubMed ID: 14503792 [TBL] [Abstract][Full Text] [Related]
14. Salmonella enterica serovar Typhimurium STM1266 encodes a regulator of curli biofilm formation: the brfS gene. Kao S; Serfecz J; Sudhakar A; Likosky K; Romiyo V; Tursi S; Tükel Ç; Wilson JW FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36792064 [TBL] [Abstract][Full Text] [Related]
15. The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium. Sharma N; Das A; Raja P; Marathe SA Microbiol Spectr; 2022 Jun; 10(3):e0020222. PubMed ID: 35678575 [TBL] [Abstract][Full Text] [Related]
16. Dissecting the cyclic di-guanylate monophosphate signalling network regulating motility in Salmonella enterica serovar Typhimurium. Le Guyon S; Simm R; Rehn M; Römling U Environ Microbiol; 2015 Apr; 17(4):1310-20. PubMed ID: 25059628 [TBL] [Abstract][Full Text] [Related]
17. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. Ahmad I; Cimdins A; Beske T; Römling U BMC Microbiol; 2017 Feb; 17(1):27. PubMed ID: 28148244 [TBL] [Abstract][Full Text] [Related]
18. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Gualdi L; Tagliabue L; Bertagnoli S; Ieranò T; De Castro C; Landini P Microbiology (Reading); 2008 Jul; 154(Pt 7):2017-2024. PubMed ID: 18599830 [TBL] [Abstract][Full Text] [Related]
19. Structural and Functional Characterization of the BcsG Subunit of the Cellulose Synthase in Salmonella typhimurium. Sun L; Vella P; Schnell R; Polyakova A; Bourenkov G; Li F; Cimdins A; Schneider TR; Lindqvist Y; Galperin MY; Schneider G; Römling U J Mol Biol; 2018 Sep; 430(18 Pt B):3170-3189. PubMed ID: 30017920 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: Prevalence among species and their roles in biofilm formation and cell-cell aggregation. Hu L; Grim CJ; Franco AA; Jarvis KG; Sathyamoorthy V; Kothary MH; McCardell BA; Tall BD Food Microbiol; 2015 Dec; 52():97-105. PubMed ID: 26338122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]