These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 29797083)
41. Salmonella Typhimurium resides largely as an extracellular pathogen in porcine tonsils, independently of biofilm-associated genes csgA, csgD and adrA. Van Parys A; Boyen F; Volf J; Verbrugghe E; Leyman B; Rychlik I; Haesebrouck F; Pasmans F Vet Microbiol; 2010 Jul; 144(1-2):93-9. PubMed ID: 20074872 [TBL] [Abstract][Full Text] [Related]
42. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Latasa C; Roux A; Toledo-Arana A; Ghigo JM; Gamazo C; Penadés JR; Lasa I Mol Microbiol; 2005 Dec; 58(5):1322-39. PubMed ID: 16313619 [TBL] [Abstract][Full Text] [Related]
43. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Lamas A; Miranda JM; Vázquez B; Cepeda A; Franco CM Int J Food Microbiol; 2016 Dec; 238():63-67. PubMed ID: 27592071 [TBL] [Abstract][Full Text] [Related]
44. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. Simm R; Lusch A; Kader A; Andersson M; Römling U J Bacteriol; 2007 May; 189(9):3613-23. PubMed ID: 17322315 [TBL] [Abstract][Full Text] [Related]
45. gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium. Bhowmick PP; Devegowda D; Ruwandeepika HA; Fuchs TM; Srikumar S; Karunasagar I; Karunasagar I Microb Pathog; 2011 Feb; 50(2):114-22. PubMed ID: 21147214 [TBL] [Abstract][Full Text] [Related]
46. Francisella philomiragia biofilm formation and interaction with the aquatic protist Acanthamoeba castellanii. Verhoeven AB; Durham-Colleran MW; Pierson T; Boswell WT; Van Hoek ML Biol Bull; 2010 Oct; 219(2):178-88. PubMed ID: 20972262 [TBL] [Abstract][Full Text] [Related]
47. Bistable expression of CsgD in Salmonella enterica serovar Typhimurium connects virulence to persistence. MacKenzie KD; Wang Y; Shivak DJ; Wong CS; Hoffman LJ; Lam S; Kröger C; Cameron AD; Townsend HG; Köster W; White AP Infect Immun; 2015 Jun; 83(6):2312-26. PubMed ID: 25824832 [TBL] [Abstract][Full Text] [Related]
48. Gene expression regulation by the Curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. Brombacher E; Baratto A; Dorel C; Landini P J Bacteriol; 2006 Mar; 188(6):2027-37. PubMed ID: 16513732 [TBL] [Abstract][Full Text] [Related]
49. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. MacKenzie KD; Wang Y; Musicha P; Hansen EG; Palmer MB; Herman DJ; Feasey NA; White AP PLoS Genet; 2019 Jun; 15(6):e1008233. PubMed ID: 31233504 [TBL] [Abstract][Full Text] [Related]
50. Biofilm formation of Salmonella enterica serovar Enteritidis cocultured with Acanthamoeba castellanii responds to nutrient availability. Zarei M; Bahrami S; Liljebjelke K Int Microbiol; 2022 Nov; 25(4):691-700. PubMed ID: 35676463 [TBL] [Abstract][Full Text] [Related]
51. Regulation of biofilm components in Salmonella enterica serovar Typhimurium by lytic transglycosylases involved in cell wall turnover. Monteiro C; Fang X; Ahmad I; Gomelsky M; Römling U J Bacteriol; 2011 Dec; 193(23):6443-51. PubMed ID: 21965572 [TBL] [Abstract][Full Text] [Related]
52. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Solano C; García B; Valle J; Berasain C; Ghigo JM; Gamazo C; Lasa I Mol Microbiol; 2002 Feb; 43(3):793-808. PubMed ID: 11929533 [TBL] [Abstract][Full Text] [Related]
53. A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. Da Re S; Ghigo JM J Bacteriol; 2006 Apr; 188(8):3073-87. PubMed ID: 16585767 [TBL] [Abstract][Full Text] [Related]
54. Regulation of biofilm formation by marT in Salmonella Typhimurium. Eran Z; Akçelik M; Yazıcı BC; Özcengiz G; Akçelik N Mol Biol Rep; 2020 Jul; 47(7):5041-5050. PubMed ID: 32529277 [TBL] [Abstract][Full Text] [Related]
55. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Brombacher E; Dorel C; Zehnder AJB; Landini P Microbiology (Reading); 2003 Oct; 149(Pt 10):2847-2857. PubMed ID: 14523117 [TBL] [Abstract][Full Text] [Related]
56. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Römling U; Galperin MY Trends Microbiol; 2015 Sep; 23(9):545-57. PubMed ID: 26077867 [TBL] [Abstract][Full Text] [Related]
57. Cellular and molecular responses of Salmonella Typhimurium to antimicrobial-induced stresses during the planktonic-to-biofilm transition. Zou Y; Woo J; Ahn J Lett Appl Microbiol; 2012 Oct; 55(4):274-82. PubMed ID: 22803575 [TBL] [Abstract][Full Text] [Related]
58. Functional analysis of superoxide dismutase of Salmonella typhimurium in serum resistance and biofilm formation. Wang Y; Yi L; Zhang J; Sun L; Wen W; Zhang C; Wang S J Appl Microbiol; 2018 Nov; 125(5):1526-1533. PubMed ID: 29989280 [TBL] [Abstract][Full Text] [Related]
59. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. Tabak M; Scher K; Hartog E; Romling U; Matthews KR; Chikindas ML; Yaron S FEMS Microbiol Lett; 2007 Feb; 267(2):200-6. PubMed ID: 17156099 [TBL] [Abstract][Full Text] [Related]
60. Phenotypes, transcriptome, and novel biofilm formation associated with the ydcI gene. Romiyo V; Wilson JW Antonie Van Leeuwenhoek; 2020 Aug; 113(8):1109-1122. PubMed ID: 32419108 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]