BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29797223)

  • 1. The heterologous expression potential of an acid-tolerant Talaromyces pinophilus β-glucosidase in Saccharomyces cerevisiae.
    Trollope K; Nel W; Volschenk H
    Folia Microbiol (Praha); 2018 Nov; 63(6):725-734. PubMed ID: 29797223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8241-54. PubMed ID: 27470141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of newly isolated Talaromyces pinophilus and statistical optimization of β-glucosidase production under solid-state fermentation.
    El-Naggar Nel-A; Haroun SA; Oweis EA; Sherief AA
    Prep Biochem Biotechnol; 2015; 45(7):712-29. PubMed ID: 25126985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation.
    Tang H; Hou J; Shen Y; Xu L; Yang H; Fang X; Bao X
    J Microbiol Biotechnol; 2013 Nov; 23(11):1577-85. PubMed ID: 23928840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase.
    Jeon E; Hyeon Je; Eun LS; Park BS; Kim SW; Lee J; Han SO
    FEMS Microbiol Lett; 2009 Nov; 301(1):130-6. PubMed ID: 19843308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3-
    Xu Y; Feng X; Jia J; Chen X; Jiang T; Rasool A; Lv B; Qu L; Li C
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30054355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii.
    Murray P; Aro N; Collins C; Grassick A; Penttilä M; Saloheimo M; Tuohy M
    Protein Expr Purif; 2004 Dec; 38(2):248-57. PubMed ID: 15555940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain.
    Casa-Villegas M; Marín-Navarro J; Polaina J
    World J Microbiol Biotechnol; 2017 Jul; 33(7):140. PubMed ID: 28589508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes.
    Jeon E; Hyeon JE; Suh DJ; Suh YW; Kim SW; Song KH; Han SO
    Mol Cells; 2009 Oct; 28(4):369-73. PubMed ID: 19812901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae.
    Den Haan R; Rose SH; Lynd LR; van Zyl WH
    Metab Eng; 2007 Jan; 9(1):87-94. PubMed ID: 17112757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae.
    Hyeon JE; Yu KO; Suh DJ; Suh YW; Lee SE; Lee J; Han SO
    FEMS Microbiol Lett; 2010 Sep; 310(1):39-47. PubMed ID: 20637040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
    Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY
    Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.
    Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S
    Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii.
    Collins CM; Murray PG; Denman S; Morrissey JP; Byrnes L; Teeri TT; Tuohy MG
    Mycol Res; 2007 Jul; 111(Pt 7):840-9. PubMed ID: 17664063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis and evaluation of cellulase properties and cellulose hydrolysis of Talaromyces piceus.
    He R; Cai P; Wu G; Zhang C; Zhang D; Chen S
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1811-9. PubMed ID: 26330062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase.
    Lamour J; Wan C; Zhang M; Zhao X; Den Haan R
    FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31073597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification.
    Mallek-Fakhfakh H; Fakhfakh J; Masmoudi N; Rezgui F; Gargouri A; Belghith H
    Prep Biochem Biotechnol; 2017 Apr; 47(4):414-423. PubMed ID: 27824279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a beta-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis.
    Kitagawa T; Tokuhiro K; Sugiyama H; Kohda K; Isono N; Hisamatsu M; Takahashi H; Imaeda T
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1841-53. PubMed ID: 20467739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.