These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 29797317)
1. Light harvesting control in plants. Ruban AV FEBS Lett; 2018 Sep; 592(18):3030-3039. PubMed ID: 29797317 [TBL] [Abstract][Full Text] [Related]
2. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. Shukla MK; Watanabe A; Wilson S; Giovagnetti V; Moustafa EI; Minagawa J; Ruban AV J Biol Chem; 2020 Dec; 295(51):17816-17826. PubMed ID: 33454016 [TBL] [Abstract][Full Text] [Related]
3. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Pawlak K; Paul S; Liu C; Reus M; Yang C; Holzwarth AR Photosynth Res; 2020 May; 144(2):195-208. PubMed ID: 32266611 [TBL] [Abstract][Full Text] [Related]
4. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Townsend AJ; Saccon F; Giovagnetti V; Wilson S; Ungerer P; Ruban AV Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):666-675. PubMed ID: 29548769 [TBL] [Abstract][Full Text] [Related]
5. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
7. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Ruban AV Plant Physiol; 2016 Apr; 170(4):1903-16. PubMed ID: 26864015 [TBL] [Abstract][Full Text] [Related]
8. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Ruban AV; Young AJ; Horton P Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246 [TBL] [Abstract][Full Text] [Related]
9. Regulation and dynamics of the light-harvesting system. Rochaix JD Annu Rev Plant Biol; 2014; 65():287-309. PubMed ID: 24471838 [TBL] [Abstract][Full Text] [Related]
10. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Belgio E; Johnson MP; Jurić S; Ruban AV Biophys J; 2012 Jun; 102(12):2761-71. PubMed ID: 22735526 [TBL] [Abstract][Full Text] [Related]
11. Carotenoid-chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29. Holleboom CP; Gacek DA; Liao PN; Negretti M; Croce R; Walla PJ Photosynth Res; 2015 May; 124(2):171-80. PubMed ID: 25744389 [TBL] [Abstract][Full Text] [Related]
12. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency. Saito A; Iino T; Sonoike K; Miwa E; Higuchi K Plant Cell Physiol; 2010 Dec; 51(12):2013-30. PubMed ID: 20980268 [TBL] [Abstract][Full Text] [Related]
13. PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis. Fristedt R; Herdean A; Blaby-Haas CE; Mamedov F; Merchant SS; Last RL; Lundin B Plant Physiol; 2015 Feb; 167(2):481-92. PubMed ID: 25511433 [TBL] [Abstract][Full Text] [Related]
14. 9-cis-Neoxanthin in Light Harvesting Complexes of Photosystem II Regulates the Binding of Violaxanthin and Xanthophyll Cycle. Wang K; Tu W; Liu C; Rao Y; Gao Z; Yang C Plant Physiol; 2017 May; 174(1):86-96. PubMed ID: 28320865 [TBL] [Abstract][Full Text] [Related]
15. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Cupellini L; Calvani D; Jacquemin D; Mennucci B Nat Commun; 2020 Jan; 11(1):662. PubMed ID: 32005811 [TBL] [Abstract][Full Text] [Related]
16. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. Sato R; Ito H; Tanaka A Photosynth Res; 2015 Dec; 126(2-3):249-59. PubMed ID: 25896488 [TBL] [Abstract][Full Text] [Related]
17. Light absorption by the chlorophyll a-b complexes of photosystem II in a leaf with special reference to LHCII. Rivadossi A; Zucchelli G; Garlaschi FM; Jennings RC Photochem Photobiol; 2004; 80(3):492-8. PubMed ID: 15623336 [TBL] [Abstract][Full Text] [Related]
18. PHOTOSYSTEM II SUBUNIT R is required for efficient binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii. Xue H; Tokutsu R; Bergner SV; Scholz M; Minagawa J; Hippler M Plant Physiol; 2015 Apr; 167(4):1566-78. PubMed ID: 25699588 [TBL] [Abstract][Full Text] [Related]
19. Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. Huang W; Chen Q; Zhu Y; Hu F; Zhang L; Ma Z; He Z; Huang J Mol Plant; 2013 Sep; 6(5):1673-91. PubMed ID: 23671330 [TBL] [Abstract][Full Text] [Related]
20. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]