These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 29797333)
41. Combined effect of chitosan and water activity on growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on maize-based media. Ferrochio LV; Cendoya E; Zachetti VG; Farnochi MC; Massad W; Ramirez ML Int J Food Microbiol; 2014 Aug; 185():51-6. PubMed ID: 24929683 [TBL] [Abstract][Full Text] [Related]
42. Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B1, and B2 in conventional and organic maize grown in Spain. Ariño A; Juan T; Estopañan G; González-Cabo JF J Food Prot; 2007 Jan; 70(1):151-6. PubMed ID: 17265874 [TBL] [Abstract][Full Text] [Related]
43. Genomics of Maize Resistance to Fusarium Ear Rot and Fumonisin Contamination. Santiago R; Cao A; Malvar RA; Butrón A Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32629954 [TBL] [Abstract][Full Text] [Related]
44. In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Bacon CW; Hinton DM Can J Microbiol; 2011 Jun; 57(6):485-92. PubMed ID: 21635192 [TBL] [Abstract][Full Text] [Related]
45. Field control of Fusarium ear rot, Ostrinia nubilalis (Hübner), and fumonisins in maize kernels. Mazzoni E; Scandolara A; Giorni P; Pietri A; Battilani P Pest Manag Sci; 2011 Apr; 67(4):458-65. PubMed ID: 21394878 [TBL] [Abstract][Full Text] [Related]
46. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. Martínez-Álvarez JC; Castro-Martínez C; Sánchez-Peña P; Gutiérrez-Dorado R; Maldonado-Mendoza IE World J Microbiol Biotechnol; 2016 May; 32(5):75. PubMed ID: 27038945 [TBL] [Abstract][Full Text] [Related]
47. Rhizobacteria and their potential to control Fusarium verticillioides: effect of maize bacterisation and inoculum density. Cavaglieri LR; Andrés L; Ibáñez M; Etcheverry MG Antonie Van Leeuwenhoek; 2005 Apr; 87(3):179-87. PubMed ID: 15803383 [TBL] [Abstract][Full Text] [Related]
48. The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Picot A; Barreau C; Pinson-Gadais L; Piraux F; Caron D; Lannou C; Richard-Forget F Appl Environ Microbiol; 2011 Dec; 77(23):8382-90. PubMed ID: 21984235 [TBL] [Abstract][Full Text] [Related]
49. Cornmeal and starch influence the dynamic of fumonisin B, A and C production and masking in Fusarium verticillioides and F. proliferatum. Lazzaro I; Falavigna C; Galaverna G; Dall'Asta C; Battilani P Int J Food Microbiol; 2013 Aug; 166(1):21-7. PubMed ID: 23827804 [TBL] [Abstract][Full Text] [Related]
50. The Effect of Beccaccioli M; Salustri M; Scala V; Ludovici M; Cacciotti A; D'Angeli S; Brown DW; Reverberi M Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33670954 [No Abstract] [Full Text] [Related]
51. Pathogenicity of Fumonisin-producing and Nonproducing Strains of Aspergillus Species in Section Nigri to Maize Ears and Seedlings. Munkvold GP; Weieneth L; Proctor RH; Busman M; Blandino M; Susca A; Logrieco A; Moretti A Plant Dis; 2018 Feb; 102(2):282-291. PubMed ID: 30673533 [TBL] [Abstract][Full Text] [Related]
52. Fumonisin production by Fusarium verticillioides strains isolated from maize in Mexico and development of a polymerase chain reaction to detect potential toxigenic strains in grains. Sánchez-Rangel D; SanJuan-Badillo A; Plasencia J J Agric Food Chem; 2005 Nov; 53(22):8565-71. PubMed ID: 16248554 [TBL] [Abstract][Full Text] [Related]
53. LC/ESI-MS/MS analysis outlines the different fumonisin patterns produced by F. verticillioides in culture media and in maize kernels. Falavigna C; Cirlini M; Galaverna G; Sforza S; Dossena A; Dall'Asta C J Mass Spectrom; 2012 Sep; 47(9):1170-6. PubMed ID: 22972785 [TBL] [Abstract][Full Text] [Related]
54. Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. Proctor RH; Plattner RD; Desjardins AE; Busman M; Butchko RA J Agric Food Chem; 2006 Mar; 54(6):2424-30. PubMed ID: 16536629 [TBL] [Abstract][Full Text] [Related]
55. Fusarium species identification and fumonisin production in maize kernels from Shandong Province, China, from 2012 to 2014. Guo C; Liu Y; Jiang Y; Li R; Pang M; Liu Y; Dong J Food Addit Contam Part B Surveill; 2016 Sep; 9(3):203-9. PubMed ID: 27076384 [TBL] [Abstract][Full Text] [Related]
57. Management of fumonisin contamination in maize kernels through the timing of insecticide application against the European corn borer Ostrinia nubilalis Hübner. Blandino M; Reyneri A; Vanara F; Pascale M; Haidukowski M; Campagna C Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Nov; 26(11):1501-14. PubMed ID: 19693720 [TBL] [Abstract][Full Text] [Related]
58. Reducing production of fumonisin mycotoxins in Fusarium verticillioides by RNA interference. Johnson ET; Proctor RH; Dunlap CA; Busman M Mycotoxin Res; 2018 Mar; 34(1):29-37. PubMed ID: 29164518 [TBL] [Abstract][Full Text] [Related]
59. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. Maschietto V; Marocco A; Malachova A; Lanubile A J Plant Physiol; 2015 Sep; 188():9-18. PubMed ID: 26398628 [TBL] [Abstract][Full Text] [Related]
60. Field performance of maize grown from Fusarium verticillioides-inoculated seed. Yates IE; Widstrom NW; Bacon CW; Glenn A; Hinton DM; Sparks D; Jaworski AJ Mycopathologia; 2005 Jan; 159(1):65-73. PubMed ID: 15750733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]