These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 29797423)
1. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
3. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
4. Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. He M; Xia Y FEMS Microbiol Lett; 2009 Feb; 291(1):127-35. PubMed ID: 19076228 [TBL] [Abstract][Full Text] [Related]
5. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
6. Vacuolar (H Shi X; Liu X; Cooper AM; Silver K; Merzendorfer H; Zhu KY; Zhang J Pest Manag Sci; 2022 Apr; 78(4):1555-1566. PubMed ID: 34981606 [TBL] [Abstract][Full Text] [Related]
7. F1 -ATP synthase α-subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis. Hu J; Xia Y Pest Manag Sci; 2016 Jul; 72(7):1433-9. PubMed ID: 26558746 [TBL] [Abstract][Full Text] [Related]
8. Integration of dsRNA against host immune response genes augments the virulence of transgenic Metarhizium robertsii strains in insect pest species. Wang Y; Xie X; Qin L; Yu D; Wang Z; Huang B Microb Biotechnol; 2021 Jul; 14(4):1433-1444. PubMed ID: 33459518 [TBL] [Abstract][Full Text] [Related]
9. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related]
10. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
11. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Jin K; Peng G; Liu Y; Xia Y Fungal Genet Biol; 2015 Apr; 77():61-7. PubMed ID: 25865794 [TBL] [Abstract][Full Text] [Related]
12. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. Guo H; Wang H; Keyhani NO; Xia Y; Peng G Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798 [TBL] [Abstract][Full Text] [Related]
13. Interactions of two insect pathogens, Paranosema locustae (Protista: Microsporidia) and Metarhizium acridum (Fungi: Hypocreales), during a mixed infection of Locusta migratoria (Insecta: Orthoptera) nymphs. Tokarev YS; Levchenko MV; Naumov AM; Senderskiy IV; Lednev GR J Invertebr Pathol; 2011 Feb; 106(2):336-8. PubMed ID: 20932843 [TBL] [Abstract][Full Text] [Related]
14. Molecular identification and related functional characterization of the FKBP52 gene in immunity of Locusta migratoria manilensis (Orthoptera: Oedipodidae). Wang M; Tian Y; Zhang N; Nong X; Tu X; Zhang Z; Huang Y; Wang Y; Zhuang L; Cha G; Liu T; Wang G J Econ Entomol; 2024 Jun; 117(3):1130-1140. PubMed ID: 38579138 [TBL] [Abstract][Full Text] [Related]
15. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum. Leng Y; Peng G; Cao Y; Xia Y BMC Microbiol; 2011 Feb; 11():32. PubMed ID: 21310069 [TBL] [Abstract][Full Text] [Related]
16. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. Zheng R; Xia Y; Keyhani NO J Proteomics; 2021 Feb; 232():104050. PubMed ID: 33217581 [TBL] [Abstract][Full Text] [Related]
17. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum. Cao Y; Li K; Xia Y Res Microbiol; 2011 Sep; 162(7):729-36. PubMed ID: 21624460 [TBL] [Abstract][Full Text] [Related]
18. Transformation of glycerate kinase (GLYK) into Metarhizium acridum increases virulence to locust. Tong X; Wang Y; Li J; Hu S; Yang P; Kang L Pest Manag Sci; 2021 Mar; 77(3):1465-1475. PubMed ID: 33128436 [TBL] [Abstract][Full Text] [Related]
19. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria. Song D; Jin Y; Shi Y; Xia Y; Peng G Pest Manag Sci; 2022 Aug; 78(8):3676-3684. PubMed ID: 35613131 [TBL] [Abstract][Full Text] [Related]
20. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum. Liu S; Peng G; Xia Y BMC Microbiol; 2012 Aug; 12():163. PubMed ID: 22853879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]