These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29797563)

  • 41. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.
    Jud NA; Hickey LJ
    Am J Bot; 2013 Dec; 100(12):2437-49. PubMed ID: 24287268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence.
    López-Martínez AM; Schönenberger J; von Balthazar M; González-Martínez CA; Ramírez-Barahona S; Sauquet H; Magallón S
    Syst Biol; 2023 Aug; 72(4):837-855. PubMed ID: 36995161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence.
    Seiffert ER
    BMC Evol Biol; 2007 Nov; 7():224. PubMed ID: 17999766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.
    Fu CN; Li HT; Milne R; Zhang T; Ma PF; Yang J; Li DZ; Gao LM
    BMC Genomics; 2017 Dec; 18(1):956. PubMed ID: 29216844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wanted dead or alive (probably dead): Stem group Polytrichaceae.
    Bippus AC; Escapa IE; Tomescu AMF
    Am J Bot; 2018 Aug; 105(8):1243-1263. PubMed ID: 29893495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.
    Jud NA
    Proc Biol Sci; 2015 Sep; 282(1814):. PubMed ID: 26336172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fossil papilionoids of the Bowdichia clade (Leguminosae) from the Paleogene of North America.
    Herendeen PS; Cardoso DBOS; Herrera F; Wing SL
    Am J Bot; 2022 Jan; 109(1):130-150. PubMed ID: 35014023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early evolutionary diversification of mandible morphology in the New World monkeys (Primate, Platyrrhini).
    Rocatti G; Aristide L; Rosenberger AL; Perez SI
    J Hum Evol; 2017 Dec; 113():24-37. PubMed ID: 29054168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphological disparity of extant and extinct pinaceous ovulate cones: How many cones are enough?
    De Brito L; Fischer V; Prestianni C
    Am J Bot; 2022 Sep; 109(9):1428-1442. PubMed ID: 35942982
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphological (and not anatomical or reproductive) features define early vascular plant phylogenetic relationships.
    Niklas KJ; Crepet WL
    Am J Bot; 2020 Mar; 107(3):477-488. PubMed ID: 32107771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna.
    Lindow BE; Dyke GJ
    Biol Rev Camb Philos Soc; 2006 Nov; 81(4):483-99. PubMed ID: 16893476
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phylogenetic relationships and timing of diversification in gonorynchiform fishes inferred using nuclear gene DNA sequences (Teleostei: Ostariophysi).
    Near TJ; Dornburg A; Friedman M
    Mol Phylogenet Evol; 2014 Nov; 80():297-307. PubMed ID: 25087656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales.
    Chartier M; Löfstrand S; von Balthazar M; Gerber S; Jabbour F; Sauquet H; Schönenberger J
    Proc Biol Sci; 2017 Apr; 284(1852):. PubMed ID: 28381623
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.
    Larson-Johnson K
    New Phytol; 2016 Jan; 209(1):418-35. PubMed ID: 26204796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Death is on Our Side: Paleontological Data Drastically Modify Phylogenetic Hypotheses.
    Koch NM; Parry LA
    Syst Biol; 2020 Nov; 69(6):1052-1067. PubMed ID: 32208492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes).
    Černý D; Natale R
    Mol Phylogenet Evol; 2022 Dec; 177():107620. PubMed ID: 36038056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves).
    Stein RW; Brown JW; Mooers AØ
    Mol Phylogenet Evol; 2015 Nov; 92():155-64. PubMed ID: 26140861
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae).
    Spasojevic T; Broad GR; Sääksjärvi IE; Schwarz M; Ito M; Korenko S; Klopfstein S
    Syst Biol; 2021 Feb; 70(2):322-339. PubMed ID: 33057674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences.
    Xiang Q; Soltis D; Soltis P
    Am J Bot; 1998 Feb; 85(2):285. PubMed ID: 21684912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new Paleogene fossil and a new dataset for waterfowl (Aves: Anseriformes) clarify phylogeny, ecological evolution, and avian evolution at the K-Pg Boundary.
    Musser G; Clarke JA
    PLoS One; 2024; 19(7):e0278737. PubMed ID: 39078833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.