These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29797645)

  • 1. Whole-Cell Biotransformation of Benzene to Phenol Catalysed by Intracellular Cytochrome P450BM3 Activated by External Additives.
    Karasawa M; Stanfield JK; Yanagisawa S; Shoji O; Watanabe Y
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12264-12269. PubMed ID: 29797645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives.
    Shoji O; Yanagisawa S; Stanfield JK; Suzuki K; Cong Z; Sugimoto H; Shiro Y; Watanabe Y
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10324-10329. PubMed ID: 28544674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer Outer Membrane Protein Facilitates Uptake of Decoy Molecules into a Cytochrome P450BM3-Based Whole-Cell Biocatalyst.
    Karasawa M; Yonemura K; Stanfield JK; Suzuki K; Shoji O
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202111612. PubMed ID: 34704327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory-Scale Hydroxylation of Steroids by P450
    Hoebenreich S; Spinck M; Nett N
    Methods Mol Biol; 2017; 1645():239-257. PubMed ID: 28710633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the applicability of cytochrome P450s and other haemoproteins.
    Ariyasu S; Stanfield JK; Aiba Y; Shoji O
    Curr Opin Chem Biol; 2020 Dec; 59():155-163. PubMed ID: 32781431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P450
    Beyer N; Kulig JK; Bartsch A; Hayes MA; Janssen DB; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2319-2331. PubMed ID: 27900443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced
    Suzuki K; Shisaka Y; Stanfield JK; Watanabe Y; Shoji O
    Chem Commun (Camb); 2020 Sep; 56(75):11026-11029. PubMed ID: 32895681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desaturation of alkylbenzenes by cytochrome P450(BM3) (CYP102A1).
    Whitehouse CJ; Bell SG; Wong LL
    Chemistry; 2008; 14(35):10905-8. PubMed ID: 19003834
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular Determinants of Substrate Affinity and Enzyme Activity of a Cytochrome P450
    Geronimo I; Denning CA; Heidary DK; Glazer EC; Payne CM
    Biophys J; 2018 Oct; 115(7):1251-1263. PubMed ID: 30224054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts.
    Bertelmann C; Bühler B
    PLoS One; 2024; 19(9):e0309965. PubMed ID: 39240904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol.
    Brixius-Anderko S; Schiffer L; Hannemann F; Janocha B; Bernhardt R
    Microb Cell Fact; 2015 Sep; 14():135. PubMed ID: 26374204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis.
    Lee H; Kim BG; Ahn JH
    J Biotechnol; 2014 Apr; 176():11-7. PubMed ID: 24560623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Enzymatic Route to α-Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3.
    Dennig A; Weingartner AM; Kardashliev T; Müller CA; Tassano E; Schürmann M; Ruff AJ; Schwaneberg U
    Chemistry; 2017 Dec; 23(71):17981-17991. PubMed ID: 28990705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1.
    Dezvarei S; Lee JHZ; Bell SG
    Enzyme Microb Technol; 2018 Apr; 111():29-37. PubMed ID: 29421034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules.
    Shoji O; Kunimatsu T; Kawakami N; Watanabe Y
    Angew Chem Int Ed Engl; 2013 Jun; 52(26):6606-10. PubMed ID: 23649984
    [No Abstract]   [Full Text] [Related]  

  • 19. The metabolism of benzene and phenol by a reconstituted purified phenobarbital-induced rat liver mixed function oxidase system.
    Griffiths JC; Kalf GF; Snyder R
    Adv Exp Med Biol; 1986; 197():213-22. PubMed ID: 3094336
    [No Abstract]   [Full Text] [Related]  

  • 20. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.
    Park SH; Kim DH; Kim D; Kim DH; Jung HC; Pan JG; Ahn T; Kim D; Yun CH
    Drug Metab Dispos; 2010 May; 38(5):732-9. PubMed ID: 20100815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.