These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 29798932)
1. High-throughput fabrication of vascularized spheroids for bioprinting. De Moor L; Merovci I; Baetens S; Verstraeten J; Kowalska P; Krysko DV; De Vos WH; Declercq H Biofabrication; 2018 Jun; 10(3):035009. PubMed ID: 29798932 [TBL] [Abstract][Full Text] [Related]
2. Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering. Colle J; Blondeel P; De Bruyne A; Bochar S; Tytgat L; Vercruysse C; Van Vlierberghe S; Dubruel P; Declercq H J Mater Sci Mater Med; 2020 Mar; 31(4):36. PubMed ID: 32206922 [TBL] [Abstract][Full Text] [Related]
3. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting. Benmeridja L; De Moor L; De Maere E; Vanlauwe F; Ryx M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Blondeel P; Declercq H J Tissue Eng Regen Med; 2020 Jun; 14(6):840-854. PubMed ID: 32336037 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue. Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503 [TBL] [Abstract][Full Text] [Related]
5. Bioprinting of a functional vascularized mouse thyroid gland construct. Bulanova EA; Koudan EV; Degosserie J; Heymans C; Pereira FD; Parfenov VA; Sun Y; Wang Q; Akhmedova SA; Sviridova IK; Sergeeva NS; Frank GA; Khesuani YD; Pierreux CE; Mironov VA Biofabrication; 2017 Aug; 9(3):034105. PubMed ID: 28707625 [TBL] [Abstract][Full Text] [Related]
6. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. De Moor L; Smet J; Plovyt M; Bekaert B; Vercruysse C; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496350 [TBL] [Abstract][Full Text] [Related]
7. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
8. In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. Dissanayaka WL; Zhu L; Hargreaves KM; Jin L; Zhang C J Endod; 2015 May; 41(5):663-70. PubMed ID: 25687363 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. De Moor L; Fernandez S; Vercruysse C; Tytgat L; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H Front Bioeng Biotechnol; 2020; 8():484. PubMed ID: 32523941 [TBL] [Abstract][Full Text] [Related]
10. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
11. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting. Ong CS; Pitaktong I; Hibino N Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113 [TBL] [Abstract][Full Text] [Related]
12. Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting. Kronemberger GS; Miranda GASC; Silva TIG; Gonçalves RM; Granjeiro JM; Baptista LS J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435900 [TBL] [Abstract][Full Text] [Related]
13. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343 [TBL] [Abstract][Full Text] [Related]
14. Bioprinting for vascular and vascularized tissue biofabrication. Datta P; Ayan B; Ozbolat IT Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487 [TBL] [Abstract][Full Text] [Related]
15. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. Dellaquila A; Le Bao C; Letourneur D; Simon-Yarza T Adv Sci (Weinh); 2021 Oct; 8(19):e2100798. PubMed ID: 34351702 [TBL] [Abstract][Full Text] [Related]
16. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Zhu W; Qu X; Zhu J; Ma X; Patel S; Liu J; Wang P; Lai CS; Gou M; Xu Y; Zhang K; Chen S Biomaterials; 2017 Apr; 124():106-115. PubMed ID: 28192772 [TBL] [Abstract][Full Text] [Related]
17. Bioprinting of high cell-density constructs leads to controlled lumen formation with self-assembly of endothelial cells. Tröndle K; Koch F; Finkenzeller G; Stark GB; Zengerle R; Koltay P; Zimmermann S J Tissue Eng Regen Med; 2019 Oct; 13(10):1883-1895. PubMed ID: 31314936 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise Three-Dimensional Printability and Angiogenesis Potential for Tissue-Engineered Substitutes. Kreimendahl F; Köpf M; Thiebes AL; Duarte Campos DF; Blaeser A; Schmitz-Rode T; Apel C; Jockenhoevel S; Fischer H Tissue Eng Part C Methods; 2017 Oct; 23(10):604-615. PubMed ID: 28826357 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Ahmad T; Shin HJ; Lee J; Shin YM; Perikamana SKM; Park SY; Jung HS; Shin H Acta Biomater; 2018 Jul; 74():464-477. PubMed ID: 29803004 [TBL] [Abstract][Full Text] [Related]
20. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting. Ong CS; Fukunishi T; Nashed A; Blazeski A; Zhang H; Hardy S; DiSilvestre D; Vricella L; Conte J; Tung L; Tomaselli G; Hibino N J Vis Exp; 2017 Jul; (125):. PubMed ID: 28715377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]