BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 29799066)

  • 1. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.
    Kutralam-Muniasamy G; Peréz-Guevara F
    World J Microbiol Biotechnol; 2018 May; 34(6):79. PubMed ID: 29799066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production.
    Orita I; Iwazawa R; Nakamura S; Fukui T
    J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of phaC2 gene and poly-3-hydroxyalkanoate production by recombinant Cupriavidus necator strains using canola oil as carbon source.
    Valdés J; Kutralam-Muniasamy G; Vergara-Porras B; Marsch R; Pérez-Guevara F; López-Cuellar MR
    N Biotechnol; 2018 Jan; 40(Pt B):200-206. PubMed ID: 28827158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expression of fadE and phaJ genes in Cupriavidus necator.
    Flores-Sánchez A; Rathinasabapathy A; López-Cuellar MDR; Vergara-Porras B; Pérez-Guevara F
    Int J Biol Macromol; 2020 Dec; 164():1600-1607. PubMed ID: 32768477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions.
    Tang R; Weng C; Peng X; Han Y
    Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production.
    Park JM; Kim TY; Lee SY
    BMC Syst Biol; 2011 Jun; 5():101. PubMed ID: 21711532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of
    Kim D; Lee SK
    J Microbiol Biotechnol; 2022 Jan; 32(1):110-116. PubMed ID: 34675141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches.
    Morlino MS; Serna García R; Savio F; Zampieri G; Morosinotto T; Treu L; Campanaro S
    Biotechnol Adv; 2023 Dec; 69():108264. PubMed ID: 37775073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers.
    Reinecke F; Steinbüchel A
    J Mol Microbiol Biotechnol; 2009; 16(1-2):91-108. PubMed ID: 18957865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers.
    Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored polyhydroxyalkanoate production from renewable non-fatty acid carbon sources using engineered Cupriavidus necator H16.
    Park S; Roh S; Yoo J; Ahn JH; Gong G; Lee SM; Um Y; Han SO; Ko JK
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130360. PubMed ID: 38387639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools.
    Raberg M; Volodina E; Lin K; Steinbüchel A
    Crit Rev Biotechnol; 2018 Jun; 38(4):494-510. PubMed ID: 29233025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates.
    Park SJ; Jang YA; Lee H; Park AR; Yang JE; Shin J; Oh YH; Song BK; Jegal J; Lee SH; Lee SY
    Metab Eng; 2013 Nov; 20():20-8. PubMed ID: 23973656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High amounts of medium-chain-length polyhydroxyalkanoates subunits can be accumulated in recombinant Cupriavidus necator with wild-type synthase.
    Araceli FS; Juliana A R; Berenice VP; Fermin PG; Bruce A R
    J Biotechnol; 2022 Apr; 349():25-31. PubMed ID: 35341893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers.
    Zhuang Q; Qi Q
    Microb Cell Fact; 2019 Aug; 18(1):135. PubMed ID: 31409350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production.
    Špoljarić IV; Lopar M; Koller M; Muhr A; Salerno A; Reiterer A; Malli K; Angerer H; Strohmeier K; Schober S; Mittelbach M; Horvat P
    Bioresour Technol; 2013 Apr; 133():482-94. PubMed ID: 23454805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16.
    Arikawa H; Sato S; Fujiki T; Matsumoto K
    J Biotechnol; 2016 Jun; 227():94-102. PubMed ID: 27059479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W.
    Arikawa H; Matsumoto K; Fujiki T
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7497-7507. PubMed ID: 28889198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.
    Berezina N
    N Biotechnol; 2013 Jan; 30(2):192-5. PubMed ID: 22634022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes.
    Strittmatter CS; Poehlein A; Himmelbach A; Daniel R; Steinbüchel A
    Appl Environ Microbiol; 2023 Jan; 89(1):e0142822. PubMed ID: 36541797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.