These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29799180)

  • 21. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and near-field visualization of a wafer-scale dense plasmonic nanostructured array.
    Yun J; Lee H; Mun C; Jahng J; Morrison WA; Nowak DB; Song JH; Lim DK; Bae TS; Kim HM; Kim NH; Nam SH; Kim J; Seo MK; Kim DH; Park SG; Suh YD
    RSC Adv; 2018 Feb; 8(12):6444-6451. PubMed ID: 35540411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography.
    Qin L; Huang Y; Xia F; Wang L; Ning J; Chen H; Wang X; Zhang W; Peng Y; Liu Q; Zhang Z
    Nano Lett; 2020 Jul; 20(7):4916-4923. PubMed ID: 32559096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling Atomic-Scale Restructuring and Cleaning of Gold Nanogap Multilayers for Surface-Enhanced Raman Scattering Sensing.
    Grys DB; Niihori M; Arul R; Sibug-Torres SM; Wyatt EW; de Nijs B; Baumberg JJ
    ACS Sens; 2023 Jul; 8(7):2879-2888. PubMed ID: 37411019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of triangular Au/Ag nanoparticle arrays with sub-10 nm nanogap controlled by flexible substrate for surface-enhanced Raman scattering.
    Zhang P; Wu J; Wang S; Fang J
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36179661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Periodic Folded Gold Nanostructures with a Sub-10 nm Nanogap for Surface-Enhanced Raman Spectroscopy.
    Ye Y; Wang J; Fang Z; Yan Y; Geng Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10450-10458. PubMed ID: 38357762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic tooth-multilayer structure with high enhancement field for surface enhanced Raman spectroscopy.
    Huang LC; Wang Z; Clark JK; Ho YL; Delaunay JJ
    Nanotechnology; 2017 Mar; 28(12):125206. PubMed ID: 28170345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves.
    Chen X; Park HR; Pelton M; Piao X; Lindquist NC; Im H; Kim YJ; Ahn JS; Ahn KJ; Park N; Kim DS; Oh SH
    Nat Commun; 2013; 4():2361. PubMed ID: 23999053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Fabrication of two dimensional silver cavity array and its application in SERS detection].
    Gu XF; Shi J; Jiang GQ; Jiang GM; Tian S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):987-90. PubMed ID: 23841413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS.
    Jin HM; Kim JY; Heo M; Jeong SJ; Kim BH; Cha SK; Han KH; Kim JH; Yang GG; Shin J; Kim SO
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44660-44667. PubMed ID: 30480431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps.
    Lawson ZR; Preston AS; Korsa MT; Dominique NL; Tuff WJ; Sutter E; Camden JP; Adam J; Hughes RA; Neretina S
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28186-28198. PubMed ID: 35695394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UV-Nanoimprint Lithography for Predefined SERS Nanopatterns Which Are Reproducible at Low Cost and High Throughput.
    Milenko K; Dullo FT; Thrane PCV; Skokic Z; Dirdal CA
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.