BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29799184)

  • 1. Dendritic Mesoporous Silica Nanoparticles with Abundant Ti
    Hong Y; Yao Y; Zhao H; Sheng Q; Ye M; Yu C; Lan M
    Anal Chem; 2018 Jun; 90(12):7617-7625. PubMed ID: 29799184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO
    Salimi K; Usta DD; Çelikbıçak Ö; Pinar A; Salih B; Tuncel A
    Colloids Surf B Biointerfaces; 2017 May; 153():280-290. PubMed ID: 28279934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti
    Hong Y; Zhan Q; Zheng Y; Pu C; Zhao H; Lan M
    Talanta; 2019 May; 197():77-85. PubMed ID: 30771991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.
    Yao J; Sun N; Deng C; Zhang X
    Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO
    Hong Y; Zhan Q; Pu C; Sheng Q; Zhao H; Lan M
    Talanta; 2018 Sep; 187():223-230. PubMed ID: 29853039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polydopamine-coated eppendorf tubes for Ti⁴⁺ immobilization for selective enrichment of phosphopeptides.
    Shi C; Deng C; Zou S; Zhang X
    Talanta; 2014 Sep; 127():88-93. PubMed ID: 24913861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples.
    Hu X; Li Y; Miao A; Deng C
    Mikrochim Acta; 2020 Jun; 187(7):400. PubMed ID: 32572637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of Ti-doped mesoporous silica for highly efficient enrichment of phosphopeptides in human placenta mitochondria.
    Wang F; Shi Z; Hu F; Xia Z; Wang L
    Anal Bioanal Chem; 2013 Feb; 405(5):1683-93. PubMed ID: 23180088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome research.
    Xu Z; Wu Y; Wu H; Sun N; Deng C
    Anal Chim Acta; 2021 Feb; 1146():53-60. PubMed ID: 33461719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed synthesis of titania nanoparticles coated hierarchially ordered macro/mesoporous silica for selective enrichment of phosphopeptides.
    Yan Y; Zhang X; Deng C
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5467-71. PubMed ID: 24666404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy.
    Chang D; Gao Y; Wang L; Liu G; Chen Y; Wang T; Tao W; Mei L; Huang L; Zeng X
    J Colloid Interface Sci; 2016 Feb; 463():279-87. PubMed ID: 26550786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides.
    Jiang J; Sun X; She X; Li J; Li Y; Deng C; Duan G
    Mikrochim Acta; 2018 May; 185(6):309. PubMed ID: 29802452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment.
    Yao J; Sun N; Wang J; Xie Y; Deng C; Zhang X
    Proteomics; 2017 Apr; 17(8):. PubMed ID: 28160437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic modification of silica-titania mesoporous materials as restricted-access matrix adsorbents for enrichment of phosphopeptides.
    Wang F; Guan Y; Zhang S; Xia Y
    J Chromatogr A; 2012 Jul; 1246():76-83. PubMed ID: 22410151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity.
    Hong Y; Zhao H; Pu C; Zhan Q; Sheng Q; Lan M
    Anal Chem; 2018 Sep; 90(18):11008-11015. PubMed ID: 30136585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides.
    Li XS; Pan YN; Zhao Y; Yuan BF; Guo L; Feng YQ
    J Chromatogr A; 2013 Nov; 1315():61-9. PubMed ID: 24090595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva.
    Li Y; Liu L; Wu H; Deng C
    Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-Engineered Hollow Nanospheres with Titanium(IV) Binding Sites and Microwindows as Affinity Probes for Ultrafast and Enhanced Phosphopeptides Enrichment.
    Li X; Ma S; Tang R; Ou J
    Anal Chem; 2022 Mar; 94(12):5159-5166. PubMed ID: 35300494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoric acid functionalized mesoporous organo-silica (EPO) as the adsorbent for in situ enrichment and isotope labeling of endogenous phosphopeptides.
    Qin H; Wang F; Wang P; Zhao L; Zhu J; Yang Q; Wu R; Ye M; Zou H
    Chem Commun (Camb); 2012 Jan; 48(7):961-3. PubMed ID: 22051540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.