These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29799740)

  • 1. Total Internal Reflection Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy.
    Otosu T; Yamaguchi S
    J Phys Chem B; 2018 Jun; 122(22):5758-5764. PubMed ID: 29799740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.
    Ishii K; Tahara T
    J Phys Chem B; 2013 Oct; 117(39):11423-32. PubMed ID: 23977902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrostatic interaction on the leaflet-specific diffusion in a supported lipid bilayer revealed by fluorescence lifetime correlation analysis.
    Otosu T; Yamaguchi S
    Phys Chem Chem Phys; 2020 Jan; 22(3):1242-1249. PubMed ID: 31850441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research.
    Benda A; Fagul'ová V; Deyneka A; Enderlein J; Hof M
    Langmuir; 2006 Nov; 22(23):9580-5. PubMed ID: 17073482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Concepts and Applications.
    Otosu T; Yamaguchi S
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30441830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence correlation and lifetime correlation spectroscopy applied to the study of supported lipid bilayer models of the cell membrane.
    Basit H; Lopez SG; Keyes TE
    Methods; 2014 Jul; 68(2):286-99. PubMed ID: 24561824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of glass-surface charge density slows the lipid diffusion in the proximal leaflet of a supported lipid bilayer.
    Otosu T; Yamaguchi S
    J Chem Phys; 2019 Jul; 151(2):025102. PubMed ID: 31301703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Conformational Dynamics of DNA Holliday Junction from Microsecond to Subsecond.
    Heo W; Hasegawa K; Okamoto K; Sako Y; Ishii K; Tahara T
    J Phys Chem Lett; 2022 Feb; 13(5):1249-1257. PubMed ID: 35089049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond Conformational Dynamics of Biopolymers Revealed by Dynamic-Quenching Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy with Single Dye Labeling.
    Sarkar B; Ishii K; Tahara T
    J Phys Chem Lett; 2019 Sep; 10(18):5536-5541. PubMed ID: 31393133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence lifetime correlation spectroscopy: Basics and applications.
    Ghosh A; Karedla N; Thiele JC; Gregor I; Enderlein J
    Methods; 2018 May; 140-141():32-39. PubMed ID: 29454862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the Diffusion of Lipids in the Proximal/Distal Leaflets of a Supported Lipid Bilayer by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy.
    Otosu T; Yamaguchi S
    J Phys Chem B; 2018 Nov; 122(45):10315-10319. PubMed ID: 30362767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy.
    Thompson NL; Burghardt TP; Axelrod D
    Biophys J; 1981 Mar; 33(3):435-54. PubMed ID: 7225515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy.
    Ohsugi Y; Saito K; Tamura M; Kinjo M
    Biophys J; 2006 Nov; 91(9):3456-64. PubMed ID: 16891361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
    Vicidomini G; Ta H; Honigmann A; Mueller V; Clausen MP; Waithe D; Galiani S; Sezgin E; Diaspro A; Hell SW; Eggeling C
    Nano Lett; 2015 Sep; 15(9):5912-8. PubMed ID: 26235350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy.
    Gregor I; Enderlein J
    Photochem Photobiol Sci; 2007 Jan; 6(1):13-8. PubMed ID: 17200732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode.
    Sarangi NK; Roobala C; Basu JK
    Methods; 2018 May; 140-141():198-211. PubMed ID: 29175337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy.
    Pero JK; Haas EM; Thompson NL
    J Phys Chem B; 2006 Jun; 110(22):10910-8. PubMed ID: 16771344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed-Interleaved-Excitation Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy.
    Sarkar B; Ishii K; Tahara T
    J Phys Chem B; 2024 May; 128(19):4685-4695. PubMed ID: 38692581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the resolution capabilities and limits of fluorescence lifetime correlation spectroscopy (FLCS) measurements.
    Rüttinger S; Kapusta P; Patting M; Wahl M; Macdonald R
    J Fluoresc; 2010 Jan; 20(1):105-14. PubMed ID: 19690947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle.
    Ishii K; Tahara T
    J Phys Chem B; 2013 Oct; 117(39):11414-22. PubMed ID: 23977832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.