BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29800053)

  • 1. Olfactory Dysfunction in Patients With CNGB1-Associated Retinitis Pigmentosa.
    Charbel Issa P; Reuter P; Kühlewein L; Birtel J; Gliem M; Tropitzsch A; Whitcroft KL; Bolz HJ; Ishihara K; MacLaren RE; Downes SM; Oishi A; Zrenner E; Kohl S; Hummel T
    JAMA Ophthalmol; 2018 Jul; 136(7):761-769. PubMed ID: 29800053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational Spectrum, Ocular and Olfactory Phenotypes of
    Geada S; Teixeira-Marques F; Teixeira B; Carvalho AL; Lousan N; Saraiva J; Murta J; Silva R; Zanlonghi X; Defoort-Dhellemmes S; Smirnov V; Dhaenens CM; Blanchet C; Meunier I; Marques JP
    Genes (Basel); 2023 Mar; 14(4):. PubMed ID: 37107588
    [No Abstract]   [Full Text] [Related]  

  • 3. Variable expressivity in patients with autosomal recessive retinitis pigmentosa associated with the gene
    Radojevic B; Jones K; Klein M; Mauro-Herrera M; Kingsley R; Birch DG; Bennett LD
    Ophthalmic Genet; 2021 Feb; 42(1):15-22. PubMed ID: 33465333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotypic and Phenotypic Characterization of a Cohort of Patients Affected by Rod Cyclic Nucleotide Channel-Associated Retinitis Pigmentosa.
    Colombo L; Bonetti G; Maltese PE; Iarossi G; Ziccardi L; Fogagnolo P; De Ruvo V; Murro V; Giorgio D; Falsini B; Placidi G; Martella S; Galantin E; Bertelli M; Rossetti L
    Ophthalmic Res; 2024; 67(1):301-310. PubMed ID: 38705136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a CNGB1 Frameshift Mutation in a Han Chinese Family with Retinitis Pigmentosa.
    Xiang Q; Guo Y; Cao Y; Xiong W; Deng X; Xu H; Li Y; Du D; Deng H
    Optom Vis Sci; 2018 Dec; 95(12):1155-1161. PubMed ID: 30451805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.
    Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Biel M; Mühlfriedel R; Michalakis S
    Hum Mol Genet; 2012 Oct; 21(20):4486-96. PubMed ID: 22802073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.
    Michalakis S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Schulze E; Becirovic E; Koch F; Seide C; Beck SC; Seeliger MW; Mühlfriedel R; Biel M
    Adv Exp Med Biol; 2014; 801():733-9. PubMed ID: 24664765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a translatable gene augmentation therapy for CNGB1-retinitis pigmentosa.
    Occelli LM; Zobel L; Stoddard J; Wagner J; Pasmanter N; Querubin J; Renner LM; Reynaga R; Winkler PA; Sun K; Marinho LFLP; O'Riordan CR; Frederick A; Lauer A; Tsang SH; Hauswirth WW; McGill TJ; Neuringer M; Michalakis S; Petersen-Jones SM
    Mol Ther; 2023 Jul; 31(7):2028-2041. PubMed ID: 37056049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach.
    Petersen-Jones SM; Occelli LM; Winkler PA; Lee W; Sparrow JR; Tsukikawa M; Boye SL; Chiodo V; Capasso JE; Becirovic E; Schön C; Seeliger MW; Levin AV; Michalakis S; Hauswirth WW; Tsang SH
    J Clin Invest; 2018 Jan; 128(1):190-206. PubMed ID: 29202463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNGB1-related rod-cone dystrophy: A mutation review and update.
    Nassisi M; Smirnov VM; Solis Hernandez C; Mohand-Saïd S; Condroyer C; Antonio A; Kühlewein L; Kempf M; Kohl S; Wissinger B; Nasser F; Ragi SD; Wang NK; Sparrow JR; Greenstein VC; Michalakis S; Mahroo OA; Ba-Abbad R; Michaelides M; Webster AR; Degli Esposti S; Saffren B; Capasso J; Levin A; Hauswirth WW; Dhaenens CM; Defoort-Dhellemmes S; Tsang SH; Zrenner E; Sahel JA; Petersen-Jones SM; Zeitz C; Audo I
    Hum Mutat; 2021 Jun; 42(6):641-666. PubMed ID: 33847019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large animal model for CNGB1 autosomal recessive retinitis pigmentosa.
    Winkler PA; Ekenstedt KJ; Occelli LM; Frattaroli AV; Bartoe JT; Venta PJ; Petersen-Jones SM
    PLoS One; 2013; 8(8):e72229. PubMed ID: 23977260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.
    Schön C; Asteriti S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Herms J; Seeliger MW; Cangiano L; Biel M; Michalakis S
    Hum Mol Genet; 2016 Mar; 25(6):1165-75. PubMed ID: 26740549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-syndromic retinitis pigmentosa.
    Verbakel SK; van Huet RAC; Boon CJF; den Hollander AI; Collin RWJ; Klaver CCW; Hoyng CB; Roepman R; Klevering BJ
    Prog Retin Eye Res; 2018 Sep; 66():157-186. PubMed ID: 29597005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic and Phenotypic Characteristics of CRB1-Associated Retinal Dystrophies: A Long-Term Follow-up Study.
    Talib M; van Schooneveld MJ; van Genderen MM; Wijnholds J; Florijn RJ; Ten Brink JB; Schalij-Delfos NE; Dagnelie G; Cremers FPM; Wolterbeek R; Fiocco M; Thiadens AA; Hoyng CB; Klaver CC; Bergen AA; Boon CJF
    Ophthalmology; 2017 Jun; 124(6):884-895. PubMed ID: 28341475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiologic and phenotypic features of an autosomal cone-rod dystrophy caused by a novel CRX mutation.
    Lines MA; Hébert M; McTaggart KE; Flynn SJ; Tennant MT; MacDonald IM
    Ophthalmology; 2002 Oct; 109(10):1862-70. PubMed ID: 12359607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the EYS gene account for approximately 5% of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype.
    Littink KW; van den Born LI; Koenekoop RK; Collin RW; Zonneveld MN; Blokland EA; Khan H; Theelen T; Hoyng CB; Cremers FP; den Hollander AI; Klevering BJ
    Ophthalmology; 2010 Oct; 117(10):2026-33, 2033.e1-7. PubMed ID: 20537394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPATA7: Evolving phenotype from cone-rod dystrophy to retinitis pigmentosa.
    Matsui R; McGuigan Iii DB; Gruzensky ML; Aleman TS; Schwartz SB; Sumaroka A; Koenekoop RK; Cideciyan AV; Jacobson SG
    Ophthalmic Genet; 2016 Sep; 37(3):333-8. PubMed ID: 26854980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three families displaying the combination of Stargardt's disease with cone-rod dystrophy or retinitis pigmentosa.
    Klevering BJ; Maugeri A; Wagner A; Go SL; Vink C; Cremers FP; Hoyng CB
    Ophthalmology; 2004 Mar; 111(3):546-53. PubMed ID: 15019334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases.
    Birtel J; Gliem M; Oishi A; Müller PL; Herrmann P; Holz FG; Mangold E; Knapp M; Bolz HJ; Charbel Issa P
    Clin Exp Ophthalmol; 2019 Aug; 47(6):779-786. PubMed ID: 30977268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical characteristics of rod and cone photoreceptor dystrophies in patients with mutations in the C8orf37 gene.
    van Huet RA; Estrada-Cuzcano A; Banin E; Rotenstreich Y; Hipp S; Kohl S; Hoyng CB; den Hollander AI; Collin RW; Klevering BJ
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4683-90. PubMed ID: 23788369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.