These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 29800273)
21. Benchmarking of 4C-seq pipelines based on real and simulated data. Walter C; Schuetzmann D; Rosenbauer F; Dugas M Bioinformatics; 2019 Dec; 35(23):4938-4945. PubMed ID: 31134276 [TBL] [Abstract][Full Text] [Related]
22. RepViz: a replicate-driven R tool for visualizing genomic regions. Faux T; Rytkönen KT; Laiho A; Elo LL BMC Res Notes; 2019 Jul; 12(1):441. PubMed ID: 31324268 [TBL] [Abstract][Full Text] [Related]
23. GenomeDISCO: a concordance score for chromosome conformation capture experiments using random walks on contact map graphs. Ursu O; Boley N; Taranova M; Wang YXR; Yardimci GG; Stafford Noble W; Kundaje A Bioinformatics; 2018 Aug; 34(16):2701-2707. PubMed ID: 29554289 [TBL] [Abstract][Full Text] [Related]
25. w4CSeq: software and web application to analyze 4C-seq data. Cai M; Gao F; Lu W; Wang K Bioinformatics; 2016 Nov; 32(21):3333-3335. PubMed ID: 27378289 [TBL] [Abstract][Full Text] [Related]
26. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions. Padmarasu S; Himmelbach A; Mascher M; Stein N Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203 [TBL] [Abstract][Full Text] [Related]
27. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq). Matelot M; Noordermeer D Methods Mol Biol; 2016; 1480():223-41. PubMed ID: 27659989 [TBL] [Abstract][Full Text] [Related]
28. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop. Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313 [TBL] [Abstract][Full Text] [Related]
29. 4See: A Flexible Browser to Explore 4C Data. Ben Zouari Y; Platania A; Molitor AM; Sexton T Front Genet; 2019; 10():1372. PubMed ID: 32038719 [TBL] [Abstract][Full Text] [Related]
30. Productive visualization of high-throughput sequencing data using the SeqCode open portable platform. Blanco E; González-Ramírez M; Di Croce L Sci Rep; 2021 Oct; 11(1):19545. PubMed ID: 34599234 [TBL] [Abstract][Full Text] [Related]
34. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data. Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512 [TBL] [Abstract][Full Text] [Related]
35. Unified Analysis of Multiple ChIP-Seq Datasets. Ma G; Babarinde IA; Zhuang Q; Hutchins AP Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050 [TBL] [Abstract][Full Text] [Related]
36. 4C technology: protocols and data analysis. van de Werken HJ; de Vree PJ; Splinter E; Holwerda SJ; Klous P; de Wit E; de Laat W Methods Enzymol; 2012; 513():89-112. PubMed ID: 22929766 [TBL] [Abstract][Full Text] [Related]
37. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. Shrestha S; Oh DH; McKowen JK; Dassanayake M; Hart CM PLoS One; 2018; 13(9):e0203843. PubMed ID: 30248133 [TBL] [Abstract][Full Text] [Related]
38. FreeHi-C simulates high-fidelity Hi-C data for benchmarking and data augmentation. Zheng Y; Keleş S Nat Methods; 2020 Jan; 17(1):37-40. PubMed ID: 31712779 [TBL] [Abstract][Full Text] [Related]
39. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ Front Immunol; 2018; 9():425. PubMed ID: 29593713 [TBL] [Abstract][Full Text] [Related]