These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29800353)

  • 1. Applied Chaos Level Test for Validation of Signal Conditions Underlying Optimal Performance of Voice Classification Methods.
    Liu B; Polce E; Sprott JC; Jiang JJ
    J Speech Lang Hear Res; 2018 May; 61(5):1130-1139. PubMed ID: 29800353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Voice Type Components Present in Human Phonation Using a Modified Diffusive Chaos Technique.
    Liu B; Polce E; Raj H; Jiang J
    Ann Otol Rhinol Laryngol; 2019 Oct; 128(10):921-931. PubMed ID: 31084359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Objective Parameter to Classify Voice Signals Based on Variation in Energy Distribution.
    Liu B; Polce E; Jiang J
    J Voice; 2019 Sep; 33(5):591-602. PubMed ID: 29785936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
    Godino-Llorente JI; Gómez-Vilda P
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization.
    Uloza V; Padervinskis E; Uloziene I; Saferis V; Verikas A
    J Voice; 2015 Sep; 29(5):552-9. PubMed ID: 25795349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals.
    Diab A; Hassan M; Marque C; Karlsson B
    Med Eng Phys; 2014 Jun; 36(6):761-7. PubMed ID: 24593872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection.
    Ghosh-Dastidar S; Adeli H; Dadmehr N
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1545-51. PubMed ID: 17867346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Classification and System Combination for Automatically Identifying Physiological and Neuromuscular Laryngeal Pathologies.
    Cordeiro H; Fonseca J; Guimarães I; Meneses C
    J Voice; 2017 May; 31(3):384.e9-384.e14. PubMed ID: 27743845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of pathological voices using a time-frequency approach.
    Umapathy K; Krishnan S; Parsa V; Jamieson DG
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):421-30. PubMed ID: 15759572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection.
    Little MA; McSharry PE; Roberts SJ; Costello DA; Moroz IM
    Biomed Eng Online; 2007 Jun; 6():23. PubMed ID: 17594480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task.
    Brockmann M; Drinnan MJ; Storck C; Carding PN
    J Voice; 2011 Jan; 25(1):44-53. PubMed ID: 20381308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of Acoustic Analysis Measurements in the Evaluation of Patients With Different Laryngeal Diagnoses.
    Lopes LW; Batista Simões L; Delfino da Silva J; da Silva Evangelista D; da Nóbrega E Ugulino AC; Oliveira Costa Silva P; Jefferson Dias Vieira V
    J Voice; 2017 May; 31(3):382.e15-382.e26. PubMed ID: 27742492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Objective Parameter for Quantifying the Turbulent Noise Portion of Voice Signals.
    Lin L; Calawerts W; Dodd K; Jiang JJ
    J Voice; 2016 Nov; 30(6):664-669. PubMed ID: 26474718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of vocal disorders in a feature space.
    Matassini L; Hegger R; Kantz H; Manfredi C
    Med Eng Phys; 2000 Jul; 22(6):413-8. PubMed ID: 11086252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voice outcomes after transoral laser microsurgery for early glottic cancer-considering signal type and smoothed cepstral peak prominence.
    Stone D; McCabe P; Palme CE; Heard R; Eastwood C; Riffat F; Madill C
    J Voice; 2015 May; 29(3):370-81. PubMed ID: 25301299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases.
    Orozco-Arroyave JR; Belalcazar-Bolaños EA; Arias-Londoño JD; Vargas-Bonilla JF; Skodda S; Rusz J; Daqrouq K; Hönig F; Nöth E
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1820-8. PubMed ID: 26277012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.