BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29800452)

  • 1. SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.
    Polishchuk M; Paz I; Yakhini Z; Mandel-Gutfreund Y
    Nucleic Acids Res; 2018 Jul; 46(W1):W221-W228. PubMed ID: 29800452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RBPmap: a web server for mapping binding sites of RNA-binding proteins.
    Paz I; Kosti I; Ares M; Cline M; Mandel-Gutfreund Y
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W361-7. PubMed ID: 24829458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins.
    Kazan H; Morris Q
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W180-6. PubMed ID: 23754853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSMART: sequence-structure motif identification for RNA-binding proteins.
    Munteanu A; Mukherjee N; Ohler U
    Bioinformatics; 2018 Dec; 34(23):3990-3998. PubMed ID: 29893814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRIO: a web server for RNA sequence and structure motif scan.
    Guarracino A; Pepe G; Ballesio F; Adinolfi M; Pietrosanto M; Sangiovanni E; Vitale I; Ausiello G; Helmer-Citterich M
    Nucleic Acids Res; 2021 Jul; 49(W1):W67-W71. PubMed ID: 34038531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
    Heller D; Krestel R; Ohler U; Vingron M; Marsico A
    Nucleic Acids Res; 2017 Nov; 45(19):11004-11018. PubMed ID: 28977546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The XXmotif web server for eXhaustive, weight matriX-based motif discovery in nucleotide sequences.
    Luehr S; Hartmann H; Söding J
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W104-9. PubMed ID: 22693218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging cross-link modification events in CLIP-seq for motif discovery.
    Bahrami-Samani E; Penalva LO; Smith AD; Uren PJ
    Nucleic Acids Res; 2015 Jan; 43(1):95-103. PubMed ID: 25505146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data.
    Dotu I; Adamson SI; Coleman B; Fournier C; Ricart-Altimiras E; Eyras E; Chuang JH
    PLoS Comput Biol; 2018 Mar; 14(3):e1006078. PubMed ID: 29596423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DRIMust: a web server for discovering rank imbalanced motifs using suffix trees.
    Leibovich L; Paz I; Yakhini Z; Mandel-Gutfreund Y
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W174-9. PubMed ID: 23685432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.
    Taliaferro JM; Lambert NJ; Sudmant PH; Dominguez D; Merkin JJ; Alexis MS; Bazile C; Burge CB
    Mol Cell; 2016 Oct; 64(2):294-306. PubMed ID: 27720642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
    Dang LT; Tondl M; Chiu MHH; Revote J; Paten B; Tano V; Tokolyi A; Besse F; Quaife-Ryan G; Cumming H; Drvodelic MJ; Eichenlaub MP; Hallab JC; Stolper JS; Rossello FJ; Bogoyevitch MA; Jans DA; Nim HT; Porrello ER; Hudson JE; Ramialison M
    BMC Genomics; 2018 Apr; 19(1):238. PubMed ID: 29621972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRIESSTESS: interpretable, high-performing models of the sequence and structure preferences of RNA-binding proteins.
    Laverty KU; Jolma A; Pour SE; Zheng H; Ray D; Morris Q; Hughes TR
    Nucleic Acids Res; 2022 Oct; 50(19):e111. PubMed ID: 36018788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences.
    Jolma A; Zhang J; Mondragón E; Morgunova E; Kivioja T; Laverty KU; Yin Y; Zhu F; Bourenkov G; Morris Q; Hughes TR; Maher LJ; Taipale J
    Genome Res; 2020 Jul; 30(7):962-973. PubMed ID: 32703884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.