These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29800452)

  • 41. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
    Dominguez D; Freese P; Alexis MS; Su A; Hochman M; Palden T; Bazile C; Lambert NJ; Van Nostrand EL; Pratt GA; Yeo GW; Graveley BR; Burge CB
    Mol Cell; 2018 Jun; 70(5):854-867.e9. PubMed ID: 29883606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15.
    Pei S; Slinger BL; Meyer MM
    BMC Bioinformatics; 2017 Jun; 18(1):298. PubMed ID: 28587636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discovering sequence and structure landscapes in RNA interaction motifs.
    Adinolfi M; Pietrosanto M; Parca L; Ausiello G; Ferrè F; Helmer-Citterich M
    Nucleic Acids Res; 2019 Jun; 47(10):4958-4969. PubMed ID: 31162604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SFmap: a web server for motif analysis and prediction of splicing factor binding sites.
    Paz I; Akerman M; Dror I; Kosti I; Mandel-Gutfreund Y
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W281-5. PubMed ID: 20501600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discovering protein-binding RNA motifs with a generative model of RNA sequences.
    Park B; Han K
    Comput Biol Chem; 2020 Feb; 84():107171. PubMed ID: 31931434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The BaMM web server for de-novo motif discovery and regulatory sequence analysis.
    Kiesel A; Roth C; Ge W; Wess M; Meier M; Söding J
    Nucleic Acids Res; 2018 Jul; 46(W1):W215-W220. PubMed ID: 29846656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNAcompete-S: Combined RNA sequence/structure preferences for RNA binding proteins derived from a single-step in vitro selection.
    Cook KB; Vembu S; Ha KCH; Zheng H; Laverty KU; Hughes TR; Ray D; Morris QD
    Methods; 2017 Aug; 126():18-28. PubMed ID: 28651966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences.
    Wu X; Bartel DP
    Nucleic Acids Res; 2017 Jul; 45(W1):W534-W538. PubMed ID: 28460012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CircularLogo: A lightweight web application to visualize intra-motif dependencies.
    Ye Z; Ma T; Kalmbach MT; Dasari S; Kocher JA; Wang L
    BMC Bioinformatics; 2017 May; 18(1):269. PubMed ID: 28532394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel method for the identification of conserved structural patterns in RNA: From small scale to high-throughput applications.
    Pietrosanto M; Mattei E; Helmer-Citterich M; Ferrè F
    Nucleic Acids Res; 2016 Oct; 44(18):8600-8609. PubMed ID: 27580722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De novo secondary structure motif discovery using RNAProfile.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2015; 1269():49-62. PubMed ID: 25577372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins.
    Mao F; Xiao L; Li X; Liang J; Teng H; Cai W; Sun ZS
    Nucleic Acids Res; 2016 Jan; 44(D1):D154-63. PubMed ID: 26635394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accurate detection of RNA stem-loops in structurome data reveals widespread association with protein binding sites.
    Radecki P; Uppuluri R; Deshpande K; Aviran S
    RNA Biol; 2021 Oct; 18(sup1):521-536. PubMed ID: 34606413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNAfbinv: an interactive Java application for fragment-based design of RNA sequences.
    Weinbrand L; Avihoo A; Barash D
    Bioinformatics; 2013 Nov; 29(22):2938-40. PubMed ID: 23975763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ResidualBind: Uncovering Sequence-Structure Preferences of RNA-Binding Proteins with Deep Neural Networks.
    Koo PK; Ploenzke M; Anand P; Paul S; Majdandzic A
    Methods Mol Biol; 2023; 2586():197-215. PubMed ID: 36705906
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.
    Yesselman JD; Das R
    Nucleic Acids Res; 2015 Jul; 43(W1):W498-501. PubMed ID: 25964298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins.
    Garzia A; Morozov P; Sajek M; Meyer C; Tuschl T
    Methods Mol Biol; 2018; 1720():55-75. PubMed ID: 29236251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3DTF: a web server for predicting transcription factor PWMs using 3D structure-based energy calculations.
    Gabdoulline R; Eckweiler D; Kel A; Stegmaier P
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W180-5. PubMed ID: 22693215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.