BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29800547)

  • 1. Functional roles of tyrosine 185 during the bacteriorhodopsin photocycle as revealed by in situ spectroscopic studies.
    Ding X; Sun C; Cui H; Chen S; Gao Y; Yang Y; Wang J; He X; Iuga D; Tian F; Watts A; Zhao X
    Biochim Biophys Acta Bioenerg; 2018 Oct; 1859(10):1006-1014. PubMed ID: 29800547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Coupling of Tyrosine 185 with the Bacteriorhodopsin Photocycle, as Revealed by Chemical Shifts, Assisted AF-QM/MM Calculations and Molecular Dynamic Simulations.
    Chen S; Ding X; Sun C; Watts A; He X; Zhao X
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin.
    Steinberg G; Sheves M; Bressler S; Ottolenghi M
    Biochemistry; 1994 Oct; 33(41):12439-50. PubMed ID: 7918466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy.
    Ahl PL; Stern LJ; Düring D; Mogi T; Khorana HG; Rothschild KJ
    J Biol Chem; 1988 Sep; 263(27):13594-601. PubMed ID: 3047127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redshift of the purple membrane absorption band and the deprotonation of tyrosine residues at high pH: Origin of the parallel photocycles of trans-bacteriorhodopsin.
    Balashov SP; Govindjee R; Ebrey TG
    Biophys J; 1991 Aug; 60(2):475-90. PubMed ID: 19431801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoisomerization of the chromophore in bacteriorhodopsin during the proton pumping photocycle.
    Mowery PC; Stoeckenius W
    Biochemistry; 1981 Apr; 20(8):2302-6. PubMed ID: 7236601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles.
    Eisfeld W; Pusch C; Diller R; Lohrmann R; Stockburger M
    Biochemistry; 1993 Jul; 32(28):7196-215. PubMed ID: 8343509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of proton pumping in bacteriorhodopsin by solid-state NMR: the protonation state of tyrosine in the light-adapted and M states.
    McDermott AE; Thompson LK; Winkel C; Farrar MR; Pelletier S; Lugtenburg J; Herzfeld J; Griffin RG
    Biochemistry; 1991 Aug; 30(34):8366-71. PubMed ID: 1653012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light- and dark-adapted bacteriorhodopsin, a time-resolved neutron diffraction study.
    Dencher NA; Papadopoulos G; Dresselhaus D; Büldt G
    Biochim Biophys Acta; 1990 Jul; 1026(1):51-6. PubMed ID: 2378881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
    Hu JG; Sun BQ; Bizounok M; Hatcher ME; Lansing JC; Raap J; Verdegem PJ; Lugtenburg J; Griffin RG; Herzfeld J
    Biochemistry; 1998 Jun; 37(22):8088-96. PubMed ID: 9609703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of bacteriorhodopsin.
    Kouyama T; Kinosita K; Ikegami A
    Adv Biophys; 1988; 24():123-75. PubMed ID: 3077237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements.
    Helmle M; Patzelt H; Ockenfels A; Gärtner W; Oesterhelt D; Bechinger B
    Biochemistry; 2000 Aug; 39(33):10066-71. PubMed ID: 10955994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriorhodopsin analog regenerated with 13-desmethyl-13-iodoretinal.
    Hiraki K; Hamanaka T; Zheng XG; Shinada T; Kim JM; Yoshihara K; Kito Y
    Biophys J; 2002 Dec; 83(6):3460-9. PubMed ID: 12496112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.
    Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J
    Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and protein environment of the retinal chromophore in light- and dark-adapted bacteriorhodopsin studied by solid-state NMR.
    Smith SO; de Groot HJ; Gebhard R; Courtin JM; Lugtenburg J; Herzfeld J; Griffin RG
    Biochemistry; 1989 Oct; 28(22):8897-904. PubMed ID: 2605231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin.
    Milder SJ; Thorgeirsson TE; Miercke LJ; Stroud RM; Kliger DS
    Biochemistry; 1991 Feb; 30(7):1751-61. PubMed ID: 1993191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.