These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29800547)

  • 41. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport.
    Ludlam GJ; Rothschild KJ
    FEBS Lett; 1997 May; 407(3):285-8. PubMed ID: 9175869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tryptophan interactions in bacteriorhodopsin: a heteronuclear solid-state NMR study.
    Petkova AT; Hatanaka M; Jaroniec CP; Hu JG; Belenky M; Verhoeven M; Lugtenburg J; Griffin RG; Herzfeld J
    Biochemistry; 2002 Feb; 41(7):2429-37. PubMed ID: 11841237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle.
    Braiman MS; Mogi T; Stern LJ; Hackett NR; Chao BH; Khorana HG; Rothschild KJ
    Proteins; 1988; 3(4):219-29. PubMed ID: 2843849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay.
    Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ
    Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle.
    Weidlich O; Schalt B; Friedman N; Sheves M; Lanyi JK; Brown LS; Siebert F
    Biochemistry; 1996 Aug; 35(33):10807-14. PubMed ID: 8718872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling.
    Lin SL; Ormos P; Eisenstein L; Govindjee R; Konno K; Nakanishi K
    Biochemistry; 1987 Dec; 26(25):8327-31. PubMed ID: 3442658
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR.
    Maciejko J; Kaur J; Becker-Baldus J; Glaubitz C
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8342-8349. PubMed ID: 30948633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analogies between halorhodopsin and bacteriorhodopsin.
    Váró G
    Biochim Biophys Acta; 2000 Aug; 1460(1):220-9. PubMed ID: 10984602
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release.
    Balashov SP; Imasheva ES; Govindjee R; Ebrey TG
    Biophys J; 1996 Jan; 70(1):473-81. PubMed ID: 8770224
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs.
    Johnson PJ; Halpin A; Morizumi T; Brown LS; Prokhorenko VI; Ernst OP; Dwayne Miller RJ
    Phys Chem Chem Phys; 2014 Oct; 16(39):21310-20. PubMed ID: 25178090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H
    Inoue S; Yoshizawa S; Nakajima Y; Kojima K; Tsukamoto T; Kikukawa T; Sudo Y
    Phys Chem Chem Phys; 2018 Jan; 20(5):3172-3183. PubMed ID: 29034950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle.
    Betancourt FM; Glaeser RM
    Biochim Biophys Acta; 2000 Aug; 1460(1):106-18. PubMed ID: 10984594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reorientations in the bacteriorhodopsin photocycle.
    Song Q; Harms GS; Wan C; Johnson CK
    Biochemistry; 1994 Nov; 33(47):14026-33. PubMed ID: 7947812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. All-trans to 13-cis retinal isomerization in light-adapted bacteriorhodopsin at acidic pH.
    Chen DL; Wang GY; Xu B; Hu KS
    J Photochem Photobiol B; 2002 Apr; 66(3):188-94. PubMed ID: 11960728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport.
    Neutze R; Pebay-Peyroula E; Edman K; Royant A; Navarro J; Landau EM
    Biochim Biophys Acta; 2002 Oct; 1565(2):144-67. PubMed ID: 12409192
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.
    Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK
    Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399
    [TBL] [Abstract][Full Text] [Related]  

  • 59. M-decay in the bacteriorhodopsin photocycle: effect of cooperativity and pH.
    Komrakov AY; Kaulen AD
    Biophys Chem; 1995; 56(1-2):113-9. PubMed ID: 17023318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrooptical studies on proton-binding and -release of bacteriorhodopsin.
    Tsuji K; Hess B
    Eur Biophys J; 1990; 18(1):63-9. PubMed ID: 2155114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.