These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2980061)

  • 1. Fatigue fracture morphology in human lumbar motion segments.
    Hansson T; Keller T; Jonson R
    J Spinal Disord; 1988; 1(1):33-8. PubMed ID: 2980061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading.
    Hansson TH; Keller TS; Spengler DM
    J Orthop Res; 1987; 5(4):479-87. PubMed ID: 3681522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue failure in shear loading of porcine lumbar spine segments.
    van Dieën JH; van der Veen A; van Royen BJ; Kingma I
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E494-8. PubMed ID: 16816749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting.
    Gallagher S; Marras WS; Litsky AS; Burr D; Landoll J; Matkovic V
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1832-9. PubMed ID: 17762290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Use of bioceramics in the treatment of fractures of the thoraco-lumbar spine].
    Stulík J; Krbec M; Vyskocil T
    Acta Chir Orthop Traumatol Cech; 2002; 69(5):288-94. PubMed ID: 12557599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration.
    Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A; Zander T; Bergmann G
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):221-7. PubMed ID: 16356613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The feature of experimental endplate fracture in lumbar spine and its related factors].
    Zhao FD; Fan SW; Dolan P; Adams M
    Zhonghua Wai Ke Za Zhi; 2006 Aug; 44(16):1132-5. PubMed ID: 17081472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive fatigue behavior of human vertebral trabecular bone.
    Rapillard L; Charlebois M; Zysset PK
    J Biomech; 2006; 39(11):2133-9. PubMed ID: 16051256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of bone mineral density after percutaneous kyphoplasty in fresh osteoporotic vertebral body fractures and adjacent vertebrae along with sagittal spine alignment.
    Korovessis P; Zacharatos S; Repantis T; Michael A; Karachalios D
    J Spinal Disord Tech; 2008 Jun; 21(4):293-8. PubMed ID: 18525491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study.
    Ruberté LM; Natarajan RN; Andersson GB
    J Biomech; 2009 Feb; 42(3):341-8. PubMed ID: 19136113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of the human lumbar motion-segments resulting from anterior shear fatigue loading.
    Skrzypiec DM; Nagel K; Sellenschloh K; Klein A; Püschel K; Morlock MM; Huber G
    Ind Health; 2016 Aug; 54(4):308-14. PubMed ID: 26829975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging.
    O'Connell GD; Johannessen W; Vresilovic EJ; Elliott DM
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2860-8. PubMed ID: 18246009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement and analysis of the in vivo posteroanterior impulse response of the human thoracolumbar spine: a feasibility study.
    Nathan M; Keller TS
    J Manipulative Physiol Ther; 1994 Sep; 17(7):431-41. PubMed ID: 7989876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading.
    Oakland RJ; Furtado NR; Wilcox RK; Timothy J; Hall RM
    Spine J; 2009 Feb; 9(2):174-81. PubMed ID: 18640876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.