These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2980061)

  • 21. The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading.
    Heuer F; Schmidt H; Wilke HJ
    J Biomech; 2008; 41(5):1086-94. PubMed ID: 18187139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Risk of lumbar spine injury from cyclic compressive loading.
    Schmidt AL; Paskoff G; Shender BS; Bass CR
    Spine (Phila Pa 1976); 2012 Dec; 37(26):E1614-21. PubMed ID: 23023594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: relevance to disc degeneration.
    Przybyla A; Pollintine P; Bedzinski R; Adams MA
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1013-9. PubMed ID: 16956702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments.
    Gallagher S; Marras WS; Litsky AS; Burr D
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):228-34. PubMed ID: 16297512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lumbar spine endplate fractures: Biomechanical evaluation and clinical considerations through experimental induction of injury.
    Curry WH; Pintar FA; Doan NB; Nguyen HS; Eckardt G; Baisden JL; Maiman DJ; Paskoff GR; Shender BS; Stemper BD
    J Orthop Res; 2016 Jun; 34(6):1084-91. PubMed ID: 26610067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prior storage conditions and loading rate affect the in vitro fracture response of spinal segments under impact loading.
    Dudli S; Haschtmann D; Ferguson SJ
    J Biomech; 2011 Sep; 44(13):2351-5. PubMed ID: 21803360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatigue fracture of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1988; 3 Suppl 1():i-S23. PubMed ID: 23905925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creating physiologically realistic vertebral fractures in a cervine model.
    Corbiere NC; Lewicki KA; Issen KA; Kuxhaus L
    J Biomech Eng; 2014 Jun; 136(6):064504. PubMed ID: 24598980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae.
    Ochia RS; Tencer AF; Ching RP
    J Biomech; 2003 Dec; 36(12):1875-81. PubMed ID: 14614941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress distribution changes in bovine vertebrae just below the endplate after sustained loading.
    van Dieën JH; Kingma I; Meijer R; Hänsel L; Huiskes R
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S135-42. PubMed ID: 11275351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Failure mechanisms in human vertebral cancellous bone.
    Fyhrie DP; Schaffler MB
    Bone; 1994; 15(1):105-9. PubMed ID: 8024844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method for inducing and determining biomechanics associated with endplate fractures in the lumbar spine.
    Kiehl KL; Curry WH; Stemper BD; Eckardt G; Basiden JL; Maiman DJ; Yoganandan N; Shender BS
    Biomed Sci Instrum; 2014; 50():119-24. PubMed ID: 25405413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading.
    Lu WW; Luk KD; Cheung KC; Gui-Xing Q; Shen JX; Yuen L; Ouyang J; Leong JC
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1196-201; discussion 1202. PubMed ID: 15167657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue response of lumbar intervertebral joints under axial cyclic loading.
    Liu YK; Njus G; Buckwalter J; Wakano K
    Spine (Phila Pa 1976); 1983; 8(8):857-65. PubMed ID: 6230741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mineral content and strength of lumbar vertebrae. A cadaver study.
    Granhed H; Jonson R; Hansson T
    Acta Orthop Scand; 1989 Feb; 60(1):105-9. PubMed ID: 2929278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.