BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29800611)

  • 1. Metabolic engineering of Escherichia coli for the production of L-malate from xylose.
    Li ZJ; Hong PH; Da YY; Li LK; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():25-32. PubMed ID: 29800611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Microbial production of poly (glycolate-co-lactate-co-3-hydroxybutyrate) from glucose and xylose by Escherichia coli].
    Da Y; Li W; Shi L; Li Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Feb; 35(2):254-262. PubMed ID: 30806055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK; Lee JW; Ort DR; Jin YS
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli.
    Guo L; Zhang F; Zhang C; Hu G; Gao C; Chen X; Liu L
    Biotechnol Bioeng; 2018 Jun; 115(6):1571-1580. PubMed ID: 29476618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli.
    Liu M; Ding Y; Xian M; Zhao G
    Microb Cell Fact; 2018 Mar; 17(1):51. PubMed ID: 29592804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli.
    Martinez I; Gao H; Bennett GN; San KY
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):53-60. PubMed ID: 29196893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of ethylene glycol in Escherichia coli.
    Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3409-17. PubMed ID: 23233208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-malate production by metabolically engineered Escherichia coli.
    Zhang X; Wang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2011 Jan; 77(2):427-34. PubMed ID: 21097588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.
    Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA
    Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli.
    Wang Y; Xian M; Feng X; Liu M; Zhao G
    Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli.
    Choi SY; Kim WJ; Yu SJ; Park SJ; Im SG; Lee SY
    Microb Biotechnol; 2017 Nov; 10(6):1353-1364. PubMed ID: 28425205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for L-malate production anaerobically.
    Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M
    Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium.
    Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.