These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29800611)

  • 41. Production of Optically Pure (
    Cao Y; Niu W; Guo J; Guo J; Liu H; Liu H; Xian M
    J Agric Food Chem; 2023 Dec; 71(50):20167-20176. PubMed ID: 38088131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli.
    Wang J; Shen X; Jain R; Wang J; Yuan Q; Yan Y
    Metab Eng; 2017 May; 41():39-45. PubMed ID: 28342964
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH; Bashkirova L; Berka R; Chandler T; Doty T; McCall K; McCulloch M; McFarland S; Thompson S; Yaver D; Berry A
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering Escherichia coli for production of 4-hydroxymandelic acid using glucose-xylose mixture.
    Li FF; Zhao Y; Li BZ; Qiao JJ; Zhao GR
    Microb Cell Fact; 2016 May; 15():90. PubMed ID: 27234226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.
    Fu H; Yu L; Lin M; Wang J; Xiu Z; Yang ST
    Metab Eng; 2017 Mar; 40():50-58. PubMed ID: 28040464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using
    Oh SJ; Lee HJ; Hwang JH; Kim HJ; Shin N; Lee SH; Seo SO; Bhatia SK; Yang YH
    J Microbiol Biotechnol; 2024 Mar; 34(3):700-709. PubMed ID: 37919866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.
    Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP
    ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.
    Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L
    Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter.
    Nduko JM; Matsumoto K; Ooi T; Taguchi S
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2453-60. PubMed ID: 24337250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli.
    Parimi NS; Durie IA; Wu X; Niyas AMM; Eiteman MA
    Microb Cell Fact; 2017 Jun; 16(1):114. PubMed ID: 28637476
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli.
    Zhang N; Wang J; Zhang Y; Gao H
    Enzyme Microb Technol; 2016 Nov; 93-94():51-58. PubMed ID: 27702485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli.
    Wu H; Lee J; Karanjikar M; San KY
    Bioresour Technol; 2014 Oct; 169():119-125. PubMed ID: 25043344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct conversion of glucose to malate by synthetic metabolic engineering.
    Ye X; Honda K; Morimoto Y; Okano K; Ohtake H
    J Biotechnol; 2013 Mar; 164(1):34-40. PubMed ID: 23246984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli.
    Gu Y; Li J; Zhang L; Chen J; Niu L; Yang Y; Yang S; Jiang W
    J Biotechnol; 2009 Sep; 143(4):284-7. PubMed ID: 19695296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.