These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29800663)
21. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Shefa AA; Amirian J; Kang HJ; Bae SH; Jung HI; Choi HJ; Lee SY; Lee BT Carbohydr Polym; 2017 Dec; 177():284-296. PubMed ID: 28962770 [TBL] [Abstract][Full Text] [Related]
22. Lysozyme/collagen multilayers layer-by-layer deposited nanofibers with enhanced biocompatibility and antibacterial activity. Yuan M; Dai F; Li D; Fan Y; Xiang W; Tao F; Cheng Y; Deng H Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110868. PubMed ID: 32409037 [TBL] [Abstract][Full Text] [Related]
23. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN; Pramanik K Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482 [TBL] [Abstract][Full Text] [Related]
24. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
25. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration. Unalan I; Colpankan O; Albayrak AZ; Gorgun C; Urkmez AS Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():842-850. PubMed ID: 27524087 [TBL] [Abstract][Full Text] [Related]
26. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649 [TBL] [Abstract][Full Text] [Related]
27. Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Song DW; Kim SH; Kim HH; Lee KH; Ki CS; Park YH Acta Biomater; 2016 Jul; 39():146-155. PubMed ID: 27163404 [TBL] [Abstract][Full Text] [Related]
28. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Shao W; He J; Han Q; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():599-610. PubMed ID: 27287159 [TBL] [Abstract][Full Text] [Related]
29. LBL deposition of chitosan and silk fibroin on nanofibers for improving physical and biological performance of patches. Xia L; Long Y; Li D; Huang L; Wang Y; Dai F; Tao F; Cheng Y; Deng H Int J Biol Macromol; 2019 Jun; 130():348-356. PubMed ID: 30817968 [TBL] [Abstract][Full Text] [Related]
30. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Shan YH; Peng LH; Liu X; Chen X; Xiong J; Gao JQ Int J Pharm; 2015 Feb; 479(2):291-301. PubMed ID: 25556053 [TBL] [Abstract][Full Text] [Related]
31. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold. Hong Y; Zhu X; Wang P; Fu H; Deng C; Cui L; Wang Q; Fan X Appl Biochem Biotechnol; 2016 Apr; 178(7):1363-76. PubMed ID: 26679706 [TBL] [Abstract][Full Text] [Related]
35. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319 [TBL] [Abstract][Full Text] [Related]
36. An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers. Zadegan S; Nourmohammadi J; Vahidi B; Haghighipour N Int J Biol Macromol; 2019 Jul; 133():795-803. PubMed ID: 31028813 [TBL] [Abstract][Full Text] [Related]
37. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. Long K; Liu Y; Li W; Wang L; Liu S; Wang Y; Wang Z; Ren L J Biomed Mater Res A; 2015 Mar; 103(3):1159-68. PubMed ID: 25044509 [TBL] [Abstract][Full Text] [Related]
38. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing. Jao D; Hu X; Beachley V ACS Appl Bio Mater; 2021 Dec; 4(12):8192-8204. PubMed ID: 35005928 [TBL] [Abstract][Full Text] [Related]
39. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181 [TBL] [Abstract][Full Text] [Related]
40. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. Singh BN; Panda NN; Pramanik K Int J Biol Macromol; 2016 Jun; 87():201-7. PubMed ID: 26905467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]