BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29800712)

  • 1. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine.
    Atif M; AlSalhi MS; Devanesan S; Masilamani V; Farhat K; Rabah D
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():40-44. PubMed ID: 29800712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence spectra of blood and urine for cervical cancer detection.
    Masilamani V; Alsalhi MS; Vijmasi T; Govindarajan K; Rathan Rai R; Atif M; Prasad S; Aldwayyan AS
    J Biomed Opt; 2012 Sep; 17(9):98001-1. PubMed ID: 23085927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence spectral diagnosis of malaria: a preliminary study.
    Masilamani V; Devanesan S; Ravikumar M; Perinbam K; AlSalhi MS; Prasad S; Palled S; Ganesh KM; Alsaeed AH
    Diagn Pathol; 2014 Oct; 9():182. PubMed ID: 25322673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic potential of Stokes Shift spectroscopy of breast and prostate tissues-- a preliminary pilot study.
    Ebenezar J; Pu Y; Liu CH; Wang WB; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):153-61. PubMed ID: 21381793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo.
    Ebenezar J; Ganesan S; Aruna P; Muralinaidu R; Renganathan K; Saraswathy TR
    J Biomed Opt; 2012 Sep; 17(9):97007-1. PubMed ID: 23085924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical cancer detection by time-resolved spectra of blood components.
    Kalaivani R; Masilamani V; AlSalhi MS; Devanesan S; Ramamurthy P; Palled SR; Ganesh KM
    J Biomed Opt; 2014 May; 19(5):057011. PubMed ID: 24853147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer detection by native fluorescence of urine.
    Masilamani V; Vijmasi T; Al Salhi M; Govindaraj K; Vijaya-Raghavan AP; Antonisamy B
    J Biomed Opt; 2010; 15(5):057003. PubMed ID: 21054119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine.
    Rajasekaran R; Aruna PR; Koteeswaran D; Padmanabhan L; Muthuvelu K; Rai RR; Thamilkumar P; Murali Krishna C; Ganesan S
    Photochem Photobiol; 2013; 89(2):483-91. PubMed ID: 22971002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer's Disease.
    Shi L; Lu L; Harvey G; Harvey T; Rodríguez-Contreras A; Alfano RR
    Sci Rep; 2017 Jun; 7(1):2599. PubMed ID: 28572632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration of FAD as a marker for cervical precancer detection.
    Meena BL; Agarwal A; Pantola C; Pandey K; Pradhan A
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30903655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive Characterization of Glycosuria and Identification of Biomarkers in Diabetic Urine Using Fluorescence Spectroscopy and Machine Learning Algorithm.
    Rehan I; Ullah R; Khan S
    J Fluoresc; 2024 May; 34(3):1391-1399. PubMed ID: 37535232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors.
    Jóskowiak A; Stasio N; Chu V; Prazeres DM; Conde JP
    Biosens Bioelectron; 2012; 36(1):242-9. PubMed ID: 22565094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Native fluorescence spectroscopy reveals spectral differences among prostate cancer cell lines with different risk levels.
    Pu Y; Xue J; Wang W; Xu B; Gu Y; Tang R; Ackerstaff E; Koutcher JA; Achilefu S; Alfano RR
    J Biomed Opt; 2013 Aug; 18(8):87002. PubMed ID: 23912761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung cancer detection by native fluorescence spectra of body fluids--a preliminary study.
    Al-Salhi M; Masilamani V; Vijmasi T; Al-Nachawati H; VijayaRaghavan AP
    J Fluoresc; 2011 Mar; 21(2):637-45. PubMed ID: 20957416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases.
    Sordillo LA; Sordillo PP; Budansky Y; Pu Y; Alfano RR
    J Biomed Opt; 2014 Dec; 19(12):125002. PubMed ID: 25521053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.
    Crowell E; Wang G; Cox J; Platz CP; Geng L
    Anal Chem; 2005 Mar; 77(5):1368-75. PubMed ID: 15732920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.