BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29800803)

  • 21. Functional analysis of deleterious
    Li D; Han X; Zhao Z; Lu Y; Yang J
    Mol Vis; 2021; 27():403-414. PubMed ID: 34267496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of deleterious
    Li D; Han X; Zhao Z; Lu Y; Yang J
    Mol Vis; 2021; 27():384-395. PubMed ID: 34220184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis.
    Murugan S; Cheng C
    Front Cell Dev Biol; 2022; 10():852236. PubMed ID: 35295853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggressive and recurrent ovarian cancers upregulate ephrinA5, a non-canonical effector of EphA2 signaling duality.
    Jukonen J; Moyano-Galceran L; Höpfner K; Pietilä EA; Lehtinen L; Huhtinen K; Gucciardo E; Hynninen J; Hietanen S; Grénman S; Ojala PM; Carpén O; Lehti K
    Sci Rep; 2021 Apr; 11(1):8856. PubMed ID: 33893375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ephrin-A5 Is Required for Optimal Fertility and a Complete Ovulatory Response to Gonadotropins in the Female Mouse.
    Buensuceso AV; Son AI; Zhou R; Paquet M; Withers BM; Deroo BJ
    Endocrinology; 2016 Feb; 157(2):942-55. PubMed ID: 26672804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency.
    Kumari SS; Eswaramoorthy S; Mathias RT; Varadaraj K
    Biochim Biophys Acta; 2011 Sep; 1812(9):1089-97. PubMed ID: 21511033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EPHA2 MUTATIONS CONTRIBUTE TO CONGENITAL CATARACT THROUGH DIVERSE MECHANISMS.
    Dave A; Martin S; Kumar R; Craig JE; Burdon KP; Sharma S
    Mol Vis; 2016; 22():18-30. PubMed ID: 26900323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial organization-dependent EphA2 transcriptional responses revealed by ligand nanocalipers.
    Verheyen T; Fang T; Lindenhofer D; Wang Y; Akopyan K; Lindqvist A; Högberg B; Teixeira AI
    Nucleic Acids Res; 2020 Jun; 48(10):5777-5787. PubMed ID: 32352518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural changes in lenses of mice lacking the gap junction protein connexin43.
    Gao Y; Spray DC
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1198-209. PubMed ID: 9620080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Human Congenital Cataract Mutation in EPHA2 Kinase Domain (p.G668D) Alters Receptor Stability and Function.
    Zhai Y; Zhu S; Li J; Yao K
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4717-4726. PubMed ID: 31725171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation.
    Bassuk JA; Birkebak T; Rothmier JD; Clark JM; Bradshaw A; Muchowski PJ; Howe CC; Clark JI; Sage EH
    Exp Eye Res; 1999 Mar; 68(3):321-31. PubMed ID: 10079140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated cataract formation and reduced lens epithelial water permeability in aquaporin-1-deficient mice.
    Ruiz-Ederra J; Verkman AS
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3960-7. PubMed ID: 16936111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A charged multivesicular body protein (CHMP4B) is required for lens growth and differentiation.
    Zhou Y; Bennett TM; Shiels A
    Differentiation; 2019; 109():16-27. PubMed ID: 31404815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dlg-1 Interacts With and Regulates the Activities of Fibroblast Growth Factor Receptors and EphA2 in the Mouse Lens.
    Lee S; Shatadal S; Griep AE
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):707-18. PubMed ID: 26906157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice.
    Shiels A; Bassnett S; Varadaraj K; Mathias R; Al-Ghoul K; Kuszak J; Donoviel D; Lilleberg S; Friedrich G; Zambrowicz B
    Physiol Genomics; 2001 Dec; 7(2):179-86. PubMed ID: 11773604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Germ-line and somatic EPHA2 coding variants in lens aging and cataract.
    Bennett TM; M'Hamdi O; Hejtmancik JF; Shiels A
    PLoS One; 2017; 12(12):e0189881. PubMed ID: 29267365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational screening of EFNA5 in Chinese age-related cataract patients.
    Lin Q; Zhou N; Zhang N; Qi Y
    Ophthalmic Res; 2014; 52(3):124-9. PubMed ID: 25300504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lens structure in MIP-deficient mice.
    Al-Ghoul KJ; Kirk T; Kuszak AJ; Zoltoski RK; Shiels A; Kuszak JR
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):714-30. PubMed ID: 12845708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Focal adhesion kinase (FAK) expression and activation during lens development.
    Kokkinos MI; Brown HJ; de Iongh RU
    Mol Vis; 2007 Mar; 13():418-30. PubMed ID: 17417603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes.
    Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA
    Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.