These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29800843)

  • 21. Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.
    Bredberg K; Karlsson HT; Holst O
    Bioresour Technol; 2004 Mar; 92(1):93-6. PubMed ID: 14643991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.
    Sha X; Ma W; Meng F; Wang R; Fuping T; Wei L
    Water Environ Res; 2016 Dec; 88(12):2219-2227. PubMed ID: 28061935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vanadium removal from LD converter slag using bacteria and fungi.
    Mirazimi SM; Abbasalipour Z; Rashchi F
    J Environ Manage; 2015 Apr; 153():144-51. PubMed ID: 25697901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment.
    Pathak A; Srichandan H; Kim DJ
    J Environ Manage; 2019 Jul; 242():372-383. PubMed ID: 31059950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone.
    Yu MF; Lin XQ; Yan M; Li XD; Chen T; Yan JH
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17563-70. PubMed ID: 27234830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.
    Huang Z; Li H; Gao J; Gu X; Zheng L; Hu P; Xin Y; Chen J; Chen Y; Zhang Z; Chen J; Tang X
    Environ Sci Technol; 2015 Dec; 49(24):14460-5. PubMed ID: 26587749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic oxidation of chlorobenzene and PCDD/Fs over V
    Qin Y; Gu J; Cai W; Wang Z
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):42809-42821. PubMed ID: 35088283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel method of microwave heating mixed liquid-assisted regeneration of V₂O₅-WO₃/TiO₂ commercial SCR catalysts.
    Qiu K; Song J; Song H; Gao X; Luo Z; Cen K
    Environ Geochem Health; 2015 Oct; 37(5):905-14. PubMed ID: 25732905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of V2O5/WO3/TiO2 for resistive-type SO2 sensors.
    Izu N; Hagen G; Schönauer D; Röder-Roith U; Moos R
    Sensors (Basel); 2011; 11(3):2982-91. PubMed ID: 22163780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ammonium Ion Enhanced V
    Lee MS; Kim SI; Jeong B; Park JW; Kim T; Lee JW; Kwon G; Lee DH
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.
    Wang S; Zheng Y; Yan W; Chen L; Dummi Mahadevan G; Zhao F
    J Hazard Mater; 2016 Dec; 320():393-400. PubMed ID: 27585271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts.
    Yang CC; Chang SH; Hong BZ; Chi KH; Chang MB
    Chemosphere; 2008 Oct; 73(6):890-5. PubMed ID: 18752829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic decomposition of PCDD/Fs on a V
    Du C; Ji L; Peng Y; Tang M; Cao X; Lu S
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15474-15483. PubMed ID: 29569197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Degradation of PCDD/Fs by the Mixture of V2O5-WO3/TiO2 Catalyst and Activated Carbon].
    Ren Y; Ji SS; Yu MF; Li XD; Yan JH
    Huan Jing Ke Xue; 2015 Sep; 36(9):3508-14. PubMed ID: 26717717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic conversion of 1,2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process.
    Chin S; Jurng J; Lee JH; Moon SJ
    Chemosphere; 2009 May; 75(9):1206-9. PubMed ID: 19269674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.
    Srichandan H; Pathak A; Kim DJ; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1740-53. PubMed ID: 25320861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic oxidation of PCDD/F on a V
    Ji L; Cao X; Lu S; Du C; Li X; Chen T; Buekens A; Yan J
    J Hazard Mater; 2018 Jan; 342():220-230. PubMed ID: 28841469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans.
    Dong Y; Chong S; Lin H
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20398-20408. PubMed ID: 34738215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst.
    Pathak A; Rana MS; Al-Sheeha H; Navvmani R; Al-Enezi HM; Al-Sairafi S; Mishra J
    Environ Sci Pollut Res Int; 2022 May; 29(23):34288-34301. PubMed ID: 35038087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-principles insights into the adsorption and interaction mechanism of selenium on selective catalytic reduction catalyst.
    Wu YW; Zhou XY; Mi TG; Hu Z; Xu MX; Zhang B; Zhao L; Lu Q
    Chemosphere; 2021 Jul; 275():130057. PubMed ID: 33667766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.