These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29800843)

  • 41. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus.
    Zhang G; Chao X; Guo P; Cao J; Yang C
    J Hazard Mater; 2015; 283():117-22. PubMed ID: 25265593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneously enhanced Cu bioleaching from E-wastes and recovered Cu ions by direct current electric field in a bioelectrical reactor.
    Wei X; Liu D; Huang W; Huang W; Lei Z
    Bioresour Technol; 2020 Feb; 298():122566. PubMed ID: 31848043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vanadium-basidiomycete fungi interaction and its impact on vanadium biogeochemistry.
    Xu YH; Brandl H; Osterwalder S; Elzinga EJ; Huang JH
    Environ Int; 2019 Sep; 130():104891. PubMed ID: 31234005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp.
    Nguyen VK; Ha MG; Shin S; Seo M; Jang J; Jo S; Kim D; Lee S; Jung Y; Kang P; Shin C; Ahn Y
    J Environ Manage; 2018 Oct; 223():852-859. PubMed ID: 29986334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system.
    Chang FY; Chen JC; Wey MY; Tsai SA
    J Hazard Mater; 2009 Oct; 170(1):239-46. PubMed ID: 19500905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elimination of chloroaromatic congeners on a commercial V
    Weng X; Xue Y; Chen J; Meng Q; Wu Z
    J Hazard Mater; 2020 Apr; 387():121705. PubMed ID: 31761642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review.
    Pathak A; Morrison L; Healy MG
    Bioresour Technol; 2017 Apr; 229():211-221. PubMed ID: 28108075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spent sulfuric acid plant catalyst: valuable resource of vanadium or risky residue? Process comparison for environmental implications.
    Mikoda B; Potysz A; Gruszecka-Kosowska A; Kmiecik E; Tomczyk A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):59358-59367. PubMed ID: 33111226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of TiO2 surface properties on the SCR activity of NOx emission abatement catalyst.
    Ye DQ; Tian LQ; Liang H
    J Environ Sci (China); 2002 Oct; 14(4):530-5. PubMed ID: 12491728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Promotional effects of carbon nanotubes on V2O5/TiO2 for NOX removal.
    Li Q; Yang H; Qiu F; Zhang X
    J Hazard Mater; 2011 Aug; 192(2):915-21. PubMed ID: 21705141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study.
    Peng Y; Li J; Si W; Luo J; Dai Q; Luo X; Liu X; Hao J
    Environ Sci Technol; 2014 Dec; 48(23):13895-900. PubMed ID: 25380546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: Effect of NO and NH3 addition.
    Wang Q; Hung PC; Lu S; Chang MB
    Chemosphere; 2016 Sep; 159():132-137. PubMed ID: 27285382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic oxidation of 1,2-DCBz over V
    Du C; Wang Q; Peng Y; Lu S; Ji L; Ni M
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4894-4901. PubMed ID: 27988900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.
    Pradhan D; Mishra D; Kim DJ; Ahn JG; Chaudhury GR; Lee SW
    J Hazard Mater; 2010 Mar; 175(1-3):267-73. PubMed ID: 19879686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
    Xu C; Liu J; Zhao Z; Yu F; Cheng K; Wei Y; Duan A; Jiang G
    J Environ Sci (China); 2015 May; 31():74-80. PubMed ID: 25968261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms.
    Mishra D; Ahn JG; Kim DJ; Roychaudhury G; Ralph DE
    J Hazard Mater; 2009 Aug; 167(1-3):1231-6. PubMed ID: 19286311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.
    Zeng J; Gou M; Tang YQ; Li GY; Sun ZY; Kida K
    Bioresour Technol; 2016 Oct; 218():859-66. PubMed ID: 27434303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards Bioleaching of a Vanadium Containing Magnetite for Metal Recovery.
    Bellenberg S; Turner S; Seidel L; van Wyk N; Zhang R; Sachpazidou V; Embile RF; Walder I; Leiviskä T; Dopson M
    Front Microbiol; 2021; 12():693615. PubMed ID: 34276626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.