These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29800847)

  • 1. Mercury transport and fate models in aquatic systems: A review and synthesis.
    Zhu S; Zhang Z; Žagar D
    Sci Total Environ; 2018 Oct; 639():538-549. PubMed ID: 29800847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury cycling and species mass balances in four North American lakes.
    Qureshi A; MacLeod M; Scheringer M; Hungerbühler K
    Environ Pollut; 2009 Feb; 157(2):452-62. PubMed ID: 19004534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition.
    Knightes CD; Sunderland EM; Craig Barber M; Johnston JM; Ambrose RB
    Environ Toxicol Chem; 2009 Apr; 28(4):881-93. PubMed ID: 19391686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate modeling of mercury species and fluxes estimation in an urban river.
    Tong Y; Zhang W; Chen C; Chen L; Wang W; Hu X; Wang H; Hu D; Ou L; Wang X; Wang Q
    Environ Pollut; 2014 Jan; 184():54-61. PubMed ID: 24035910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury contaminated sediment sites-an evaluation of remedial options.
    Randall PM; Chattopadhyay S
    Environ Res; 2013 Aug; 125():131-49. PubMed ID: 23489986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A decision framework for possible remediation of contaminated sediments in the River Kymijoki, Finland.
    Verta M; Kiviranta H; Salo S; Malve O; Korhonen M; Verkasalo PK; Ruokojärvi P; Rossi E; Hanski A; Päätalo K; Vartiainen T
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):95-105. PubMed ID: 18941816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic mass balance model for mercury in the St. Lawrence River near Cornwall, Ontario, Canada.
    Lessard CR; Poulain AJ; Ridal JJ; Blais JM
    Sci Total Environ; 2014 Dec; 500-501():131-8. PubMed ID: 25217751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania.
    Bravo AG; Loizeau JL; Ancey L; Ungureanu VG; Dominik J
    Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S66-75. PubMed ID: 18936996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.
    Liu Y; Li C; Anderson B; Zhang S; Shi X; Zhao S
    Chemosphere; 2017 Jun; 176():117-124. PubMed ID: 28260652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model approach for evaluating effects of remedial actions on mercury speciation and transport in a lake system.
    Kim D; Wang Q; Sorial GA; Dionysiou DD; Timberlake D
    Sci Total Environ; 2004 Jul; 327(1-3):1-15. PubMed ID: 15172567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: application to Lahontan Reservoir (Nevada, USA).
    Gandhi N; Bhavsar SP; Diamond ML; Kuwabara JS; Marvin-Dipasquale M; Krabbenhoft DP
    Environ Toxicol Chem; 2007 Nov; 26(11):2260-73. PubMed ID: 17941724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state mass balance model for mercury in the St. Lawrence River near Cornwall, Ontario, Canada.
    Lessard CR; Poulain AJ; Ridal JJ; Blais JM
    Environ Pollut; 2013 Mar; 174():229-35. PubMed ID: 23287073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources and remediation for mercury contamination in aquatic systems--a literature review.
    Wang Q; Kim D; Dionysiou DD; Sorial GA; Timberlake D
    Environ Pollut; 2004 Sep; 131(2):323-36. PubMed ID: 15234099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling aggregation and sedimentation of nanoparticles in the aquatic environment.
    Markus AA; Parsons JR; Roex EW; de Voogt P; Laane RW
    Sci Total Environ; 2015 Feb; 506-507():323-9. PubMed ID: 25460966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury cycling in aquatic ecosystems and trophic state-related variables--implications from structural equation modeling.
    Pollman CD
    Sci Total Environ; 2014 Nov; 499():62-73. PubMed ID: 25173863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems.
    Meili M; Bishop K; Bringmark L; Johansson K; Munthe J; Sverdrup H; de Vries W
    Sci Total Environ; 2003 Mar; 304(1-3):83-106. PubMed ID: 12663174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota.
    Jonsson S; Skyllberg U; Nilsson MB; Lundberg E; Andersson A; Björn E
    Nat Commun; 2014 Aug; 5():4624. PubMed ID: 25140406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of mercury biogeochemical cycling at the sediment-water interface in anthropogenically modified lagoon environments.
    Petranich E; Covelli S; Acquavita A; Faganeli J; Horvat M; Contin M
    J Environ Sci (China); 2018 Jun; 68():5-23. PubMed ID: 29908744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments.
    Futter MN; Poste AE; Butterfield D; Dillon PJ; Whitehead PG; Dastoor AP; Lean DR
    Sci Total Environ; 2012 May; 424():219-31. PubMed ID: 22444066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.