These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29801169)

  • 1. The Scaffold-Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions.
    Chen T; McCarthy MM; Guo H; Warren R; Maher SA
    J Biomech Eng; 2018 Sep; 140(9):0910021-7. PubMed ID: 29801169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interface mechanical discontinuities on scaffold-cartilage integration.
    Yodmuang S; Guo H; Brial C; Warren RF; Torzilli PA; Chen T; Maher SA
    J Orthop Res; 2019 Apr; 37(4):845-854. PubMed ID: 30690798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress.
    Krishnan R; Park S; Eckstein F; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):569-77. PubMed ID: 14618915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage.
    Lin W; Meng Q; Li J; Chen Z; Jin Z
    Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive fatigue and endurance of juvenile bovine articular cartilage explants.
    Riemenschneider PE; Rose MD; Giordani M; McNary SM
    J Biomech; 2019 Oct; 95():109304. PubMed ID: 31447176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load sharing between solid and fluid phases in articular cartilage: II--Comparison of experimental results and u-p finite element predictions.
    Mukherjee N; Wayne JS
    J Biomech Eng; 1998 Oct; 120(5):620-4. PubMed ID: 10412440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The compressive strength of articular cartilage.
    Kerin AJ; Wisnom MR; Adams MA
    Proc Inst Mech Eng H; 1998; 212(4):273-80. PubMed ID: 9769695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of macro-cracks on the load bearing capacity of articular cartilage.
    Komeili A; Chau W; Herzog W
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1371-1381. PubMed ID: 30993486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage.
    Zevenbergen L; Gsell W; Cai L; Chan DD; Famaey N; Vander Sloten J; Himmelreich U; Neu CP; Jonkers I
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1699-1709. PubMed ID: 30172835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sulfation pattern of chondroitin sulfate from articular cartilage explants in response to mechanical loading.
    Sauerland K; Plaas AH; Raiss RX; Steinmeyer J
    Biochim Biophys Acta; 2003 Jul; 1638(3):241-8. PubMed ID: 12878325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-rate dependent stiffness of articular cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2003 Apr; 125(2):161-8. PubMed ID: 12751277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2014 Aug; 47(11):2721-9. PubMed ID: 24882738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth and strain rate-dependent mechanical response of chondrocytes in reserve zone cartilage subjected to compressive loading.
    Kazemi M; Williams JL
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1477-1493. PubMed ID: 33844092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading.
    Steinmeyer J; Knue S
    Biochem Biophys Res Commun; 1997 Nov; 240(1):216-21. PubMed ID: 9367913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibronectin metabolism of cartilage explants in response to the frequency of intermittent loading.
    Wolf A; Raiss RX; Steinmeyer J
    J Orthop Res; 2003 Nov; 21(6):1081-9. PubMed ID: 14554222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment.
    Korhonen RK; Jurvelin JS
    Med Eng Phys; 2010 Mar; 32(2):155-60. PubMed ID: 19955010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.