These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 29801203)

  • 1. Investigation of sub-slab pressure field extension in specified granular fill materials incorporating a sump-based soil depressurisation system for radon mitigation.
    Hung LC; Goggins J; Fuente M; Foley M
    Sci Total Environ; 2018 Oct; 637-638():1081-1097. PubMed ID: 29801203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale experimental investigations of specified granular fill materials for radon mitigation by active and passive soil depressurisations.
    Hung LC; Goggins J; Croxford C; Foley M
    J Environ Radioact; 2019 Oct; 207():27-36. PubMed ID: 31154122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of gas flow through soils and granular fill materials for the optimisation of radon soil depressurisation systems.
    Fuente M; Muñoz E; Sicilia I; Goggins J; Hung LC; Frutos B; Foley M
    J Environ Radioact; 2019 Mar; 198():200-209. PubMed ID: 30640034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radon mitigation by soil depressurisation case study: Radon concentration and pressure field extension monitoring in a pilot house in Spain.
    Fuente M; Rábago D; Goggins J; Fuente I; Sainz C; Foley M
    Sci Total Environ; 2019 Dec; 695():133746. PubMed ID: 31416037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domestic radon remediation of UK dwellings by Sub-Slab Depressurisation: evidence for a baseline contribution from constructional materials.
    Groves-Kirkby CJ; Denman AR; Phillips PS; Tornberg R; Woolridge AC; Crockett RG
    Environ Int; 2008 Apr; 34(3):428-36. PubMed ID: 18001835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A full-scale experimental study of sub-slab pressure fields induced by underground perforated pipes as a soil depressurisation technique in radon mitigation.
    Frutos B; Sicilia I; Campo O; Aparicio S; González M; Anaya JJ; Rábago D; Sainz C
    J Environ Radioact; 2020 Dec; 225():106420. PubMed ID: 32950750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-slab depressurisation systems used in the Czech Republic and verification of their efficiency.
    Jiránek M
    Radiat Prot Dosimetry; 2014 Nov; 162(1-2):63-7. PubMed ID: 25004940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling radon entry into Florida slab-on-grade houses.
    Revzan KL; Fisk WJ; Sextro RG
    Health Phys; 1993 Oct; 65(4):375-85. PubMed ID: 8376117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of a passive opened top-end pipe as an alternative solution for passive soil depressurisation systems for indoor radon mitigation.
    Hung LC; Goggins J; Meier P; Monahan E; Foley M
    Sci Total Environ; 2020 Dec; 748():141167. PubMed ID: 32818898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiences in radon-safe building in Finland.
    Arvela H
    Sci Total Environ; 2001 May; 272(1-3):169-74. PubMed ID: 11379905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radon control systems in existing and new construction: a review.
    Rahman NM; Tracy BL
    Radiat Prot Dosimetry; 2009 Aug; 135(4):243-55. PubMed ID: 19622543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radon remediation of a two-storey UK dwelling by active sub-slab depressurisation: effects and health implications of radon concentration distributions.
    Allison CC; Denman AR; Groves-Kirkby CJ; Phillips PS; Tornberg R
    Environ Int; 2008 Oct; 34(7):1006-15. PubMed ID: 18456335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration.
    Muñoz E; Frutos B; Olaya M; Sánchez J
    J Environ Radioact; 2017 Oct; 177():280-289. PubMed ID: 28728129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing radon mitigation techniques in a pilot house from Băiţa-Ştei radon prone area (Romania).
    Cosma C; Papp B; Cucoş Dinu A; Sainz C
    J Environ Radioact; 2015 Feb; 140():141-7. PubMed ID: 25483354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania).
    Cosma C; Cucoş-Dinu A; Papp B; Begy R; Sainz C
    J Environ Radioact; 2013 Feb; 116():174-9. PubMed ID: 23164693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?
    Borgoni R; De Francesco D; De Bartolo D; Tzavidis N
    J Environ Radioact; 2014 Dec; 138():227-37. PubMed ID: 25261869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radon exhalation from sub-slab aggregate used in home construction in Canada.
    Bergman L; Lee J; Sadi B; Chen J
    Radiat Prot Dosimetry; 2015 Jun; 164(4):606-11. PubMed ID: 25977347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of indoor air conditions on radon concentration in a detached house.
    Akbari K; Mahmoudi J; Ghanbari M
    J Environ Radioact; 2013 Feb; 116():166-73. PubMed ID: 23159846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon interventions around the globe: A systematic review.
    Khan SM; Gomes J; Krewski DR
    Heliyon; 2019 May; 5(5):e01737. PubMed ID: 31193708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples.
    Sahoo BK; Sapra BK; Gaware JJ; Kanse SD; Mayya YS
    Sci Total Environ; 2011 Jun; 409(13):2635-41. PubMed ID: 21482430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.