These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 29801218)
1. Removal of dissolved chromium from synthetic mine effluent: A mesocosm experiment. Amin R; Edraki M; Doley D; Sheridan C Sci Total Environ; 2018 Oct; 637-638():1252-1261. PubMed ID: 29801218 [TBL] [Abstract][Full Text] [Related]
2. Influence of plants on the reduction of hexavalent chromium in wetland sediments. Zazo JA; Paull JS; Jaffe PR Environ Pollut; 2008 Nov; 156(1):29-35. PubMed ID: 18299165 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes. Maine MA; Hadad HR; Sánchez G; Caffaratti S; Pedro MC Int J Phytoremediation; 2016; 18(3):261-8. PubMed ID: 26366503 [TBL] [Abstract][Full Text] [Related]
4. Effects of plants on the removal of hexavalent chromium in wetland sediments. Xu S; Jaffé PR J Environ Qual; 2006; 35(1):334-41. PubMed ID: 16397109 [TBL] [Abstract][Full Text] [Related]
5. Chromium removal efficiency of plant, microbe and media in experimental VSSF constructed wetlands under monocropped and co-cropped conditions. Kumar P; Kaur R; Celestin D; Kumar P Environ Sci Pollut Res Int; 2020 Jan; 27(2):2071-2086. PubMed ID: 31773522 [TBL] [Abstract][Full Text] [Related]
6. Chromium removal capability and photosynthetic characteristics of Cyperus alternifolius and Coix lacryma-jobi L. in vertical flow constructed wetland treated with hexavalent chromium bearing domestic sewage. Li S; Huang H; Li Z; Li Z; He Z; Liang H Water Sci Technol; 2017 Oct; 76(7-8):2203-2212. PubMed ID: 29068350 [TBL] [Abstract][Full Text] [Related]
7. Floating treatment wetlands with Canna indica for the removal of Cr(III) and Cr(VI) from water: A comprehensive study. Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Campagnoli MA Sci Total Environ; 2024 Aug; 940():173642. PubMed ID: 38821283 [TBL] [Abstract][Full Text] [Related]
8. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the potential for the natural attenuation of hexavalent chromium within a sub-wetland ground water. Hellerich LA; Nikolaidis NP; Dobbs GM J Environ Manage; 2008 Sep; 88(4):1513-24. PubMed ID: 17900791 [TBL] [Abstract][Full Text] [Related]
10. Plant extract as environmental-friendly green catalyst for the reduction of hexavalent chromium in tannery effluent. Johnson P; Loganathan C; Krishnan V; Sakayanathan P; Raji V; Vijayan S; Sathishkumar P; Murugesan K; Palvannan T Environ Technol; 2018 Jun; 39(11):1376-1383. PubMed ID: 28488473 [TBL] [Abstract][Full Text] [Related]
11. Phytoefficacy of Eicchornia crassipes (Mart.) Solms-Laub for aqua-remediation of hexavalent chromium in chromite mine effluent of South Kaliapani, Odisha, India. Mohanty M; Pattnaik MM; Mishra AK; Patra HK Environ Sci Pollut Res Int; 2023 Mar; 30(15):43927-43931. PubMed ID: 36670220 [TBL] [Abstract][Full Text] [Related]
13. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with Maine MA; Hadad HR; Camaño Silvestrini NE; Nocetti E; Sanchez GC; Campagnoli MA Int J Phytoremediation; 2022; 24(1):66-75. PubMed ID: 34077330 [TBL] [Abstract][Full Text] [Related]
14. Study on the performance of vertical flow constructed wetland microcosm with Canna sps. for treatment of high chromium-containing wastewater. Kumari D; Dutta K Chemosphere; 2023 Nov; 341():139993. PubMed ID: 37657705 [TBL] [Abstract][Full Text] [Related]
15. Performance and efficiency services for the removal of hexavalent chromium from water by common macrophytes. Das M; Bramhanand PS; Laxminarayana K Int J Phytoremediation; 2021; 23(10):1095-1103. PubMed ID: 33567905 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Geng B; Jin Z; Li T; Qi X Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Microbial Communities, Identification of Cr(VI) Reducing Bacteria in Constructed Wetland and Cr(VI) Removal Ability of Bacillus cereus. Lin H; You S; Liu L Sci Rep; 2019 Sep; 9(1):12873. PubMed ID: 31492913 [TBL] [Abstract][Full Text] [Related]
18. Clogging influence on metals migration and removal in sub-surface flow constructed wetlands. Ranieri E; Young TM J Contam Hydrol; 2012 Mar; 129-130():38-45. PubMed ID: 22304895 [TBL] [Abstract][Full Text] [Related]
19. Potential of constructed wetland systems for treating tannery industrial wastewater. Kaseva ME; Mbuligwe SE Water Sci Technol; 2010; 61(4):1043-52. PubMed ID: 20182085 [TBL] [Abstract][Full Text] [Related]
20. Biological Cr(VI) removal using bio-filters and constructed wetlands. Michailides MK; Sultana MY; Tekerlekopoulou AG; Akratos CS; Vayenas DV Water Sci Technol; 2013; 68(10):2228-33. PubMed ID: 24292472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]