BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29801227)

  • 1. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV.
    Kwon M; Yoon Y; Kim S; Jung Y; Hwang TM; Kang JW
    Sci Total Environ; 2018 Oct; 637-638():1351-1357. PubMed ID: 29801227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water.
    Watts MJ; Linden KG
    Water Res; 2007 Jul; 41(13):2871-8. PubMed ID: 17498769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources.
    Yin R; Ling L; Shang C
    Water Res; 2018 Oct; 142():452-458. PubMed ID: 29913386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution.
    Carlson JC; Stefan MI; Parnis JM; Metcalfe CD
    Water Res; 2015 Nov; 84():350-61. PubMed ID: 26282501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process.
    Gao ZC; Lin YL; Xu B; Xia Y; Hu CY; Zhang TY; Cao TC; Chu WH; Gao NY
    Water Res; 2019 May; 154():199-209. PubMed ID: 30798174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photolysis of free chlorine and production of reactive radicals in the UV/chlorine system using polychromatic spectrum LEDs as UV sources.
    Li GQ; Huo ZY; Wu QY; Chen Z; Wu YH; Lu Y; Hu HY
    Chemosphere; 2022 Jan; 286(Pt 3):131828. PubMed ID: 34416584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).
    Lee Y; von Gunten U
    Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.
    Xiang Y; Fang J; Shang C
    Water Res; 2016 Mar; 90():301-308. PubMed ID: 26748208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing radical yield from free chlorine with tailored UV light emitting diode emission spectra.
    Pimentel A; Linden KG
    Water Res; 2024 Feb; 249():120923. PubMed ID: 38064784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV direct photolysis of sulfamethoxazole and ibuprofen: An experimental and modelling study.
    Luo S; Wei Z; Spinney R; Zhang Z; Dionysiou DD; Gao L; Chai L; Wang D; Xiao R
    J Hazard Mater; 2018 Feb; 343():132-139. PubMed ID: 28942186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of reactive species in micropollutant degradation in the UV/free chlorine system.
    Fang J; Fu Y; Shang C
    Environ Sci Technol; 2014; 48(3):1859-68. PubMed ID: 24400681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the efficacy of the UV/Chlorine process for the removal of trimethoprim: Effects of operational parameters and artificial neural networks modelling.
    Teo YS; Jafari I; Liang F; Jung Y; Van der Hoek JP; Ong SL; Hu J
    Sci Total Environ; 2022 Mar; 812():152551. PubMed ID: 34952077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.
    Aghdam E; Xiang Y; Sun J; Shang C; Yang X; Fang J
    J Environ Sci (China); 2017 Aug; 58():146-154. PubMed ID: 28774603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.
    Wu Q; Li Y; Wang W; Wang T; Hu H
    J Environ Sci (China); 2016 Mar; 41():227-234. PubMed ID: 26969069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of Bromine Radicals and Hydroxyl Radicals in the Degradation of Micropollutants by the UV/Bromine Process.
    Guo K; Zheng S; Zhang X; Zhao L; Ji S; Chen C; Wu Z; Wang D; Fang J
    Environ Sci Technol; 2020 May; 54(10):6415-6426. PubMed ID: 32320225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-LED/chlorine degradation of propranolol in water: Degradation pathway and product toxicity.
    Xiong R; Lu Z; Tang Q; Huang X; Ruan H; Jiang W; Chen Y; Liu Z; Kang J; Liu D
    Chemosphere; 2020 Jun; 248():125957. PubMed ID: 32006829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced ronidazole degradation by UV-LED/chlorine compared with conventional low-pressure UV/chlorine at neutral and alkaline pH values.
    Zou XY; Lin YL; Xu B; Zhang TY; Hu CY; Cao TC; Chu WH; Pan Y; Gao NY
    Water Res; 2019 Sep; 160():296-303. PubMed ID: 31154127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of chloride on the 185 nm advanced oxidation process.
    Furatian L; Mohseni M
    Chemosphere; 2018 May; 199():263-268. PubMed ID: 29448193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.
    Qin L; Lin YL; Xu B; Hu CY; Tian FX; Zhang TY; Zhu WQ; Huang H; Gao NY
    Water Res; 2014 Nov; 65():271-81. PubMed ID: 25141357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the wavelength-dependent photolysis of chlorite: Elimination of carbamazepine and formation of chlorate.
    Wang J; Zhu S; Wu Y; Sheng D; Bu L; Zhou S
    Chemosphere; 2022 Feb; 288(Pt 1):132505. PubMed ID: 34627813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.