These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29801258)

  • 1. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
    Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H
    Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping global mangrove canopy height by integrating Ice, Cloud, and Land Elevation Satellite-2 photon-counting LiDAR data with multi-source images.
    Yu J; Nie S; Liu W; Zhu X; Sun Z; Li J; Wang C; Xi X; Fan H
    Sci Total Environ; 2024 Aug; 939():173487. PubMed ID: 38810758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA.
    Wang C; Zhu X; Nie S; Xi X; Li D; Zheng W; Chen S
    Opt Express; 2019 Dec; 27(26):38168-38179. PubMed ID: 31878588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation and land classification method based on the background noise rate of a photon-counting LiDAR.
    Wang Y; Yang X; Wang C
    Opt Express; 2022 Apr; 30(9):14121-14133. PubMed ID: 35473163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies.
    Montesano PM; Neigh C; Sun G; Duncanson L; Hoek JVD; Jon Ranson K
    Remote Sens Environ; 2017 Jul; 196():76-88. PubMed ID: 32848282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL).
    Jasinski MF; Stoll JD; Cook WB; Ondrusek M; Stengel E; Brunt K
    J Coast Res; 2016; 76(sp1):44-55. PubMed ID: 31708604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar.
    Ma Y; Liu R; Li S; Zhang W; Yang F; Su D
    Opt Express; 2018 Sep; 26(19):24752-24762. PubMed ID: 30469587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data.
    Jing L; Wei X; Song Q; Wang F
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating FPAR of maize canopy using airborne discrete-return LiDAR data.
    Luo S; Wang C; Xi X; Pan F
    Opt Express; 2014 Mar; 22(5):5106-17. PubMed ID: 24663850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ice, Cloud, and Land Elevation Satellite - 2 Mission: A Global Geolocated Photon Product Derived From the Advanced Topographic Laser Altimeter System.
    Neumann TA; Martino AJ; Markus T; Bae S; Bock MR; Brenner AC; Brunt KM; Cavanaugh J; Fernandes ST; Hancock DW; Harbeck K; Lee J; Kurtz NT; Luers PJ; Luthcke SB; Magruder L; Pennington TA; Ramos-Izquierdo L; Rebold T; Skoog J; Thomas TC
    Remote Sens Environ; 2019 Nov; 233():. PubMed ID: 31708597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical background noise rate over water surface for a photon-counting lidar and its application in land and sea cover classification.
    Zhang Z; Ma Y; Xu N; Li S; Sun J; Wang XH
    Opt Express; 2019 Sep; 27(20):A1490-A1505. PubMed ID: 31684501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Density-Based Multilevel Terrain-Adaptive Noise Removal Method for ICESat-2 Photon-Counting Data.
    Wang L; Zhang X; Zhang Y; Chen F; Dang S; Sun T
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.
    Wang D; Xin X; Shao Q; Brolly M; Zhu Z; Chen J
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.
    Wasser L; Day R; Chasmer L; Taylor A
    PLoS One; 2013; 8(1):e54776. PubMed ID: 23382966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform.
    Akturk E; Popescu SC; Malambo L
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing and correcting topographic effects on forest canopy height retrieval using airborne LiDAR data.
    Duan Z; Zhao D; Zeng Y; Zhao Y; Wu B; Zhu J
    Sensors (Basel); 2015 May; 15(6):12133-55. PubMed ID: 26016907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+.
    Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE
    Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observing the forest canopy with a new ultra-violet compact airborne lidar.
    Cuesta J; Chazette P; Allouis T; Flamant PH; Durrieu S; Sanak J; Genau P; Guyon D; Loustau D; Flamant C
    Sensors (Basel); 2010; 10(8):7386-403. PubMed ID: 22163608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.