These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29801261)

  • 1. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration.
    Marín-Sáez J; Atencia J; Chemisana D; Collados MV
    Opt Express; 2018 May; 26(10):A398-A412. PubMed ID: 29801261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.
    Marín-Sáez J; Atencia J; Chemisana D; Collados MV
    Opt Express; 2016 Mar; 24(6):A720-30. PubMed ID: 27136889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications.
    Akbari H; Naydenova I; Martin S
    Appl Opt; 2014 Mar; 53(7):1343-53. PubMed ID: 24663364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the Effect of Methyldiethanolamine Initiator on the Recording Properties of Acrylamide Based Photopolymer.
    Rogers B; Martin S; Naydenova I
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32218188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chemistry and Physics of Bayfol
    Bruder FK; Fäcke T; Rölle T
    Polymers (Basel); 2017 Sep; 9(10):. PubMed ID: 30965774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of holographic recording options for reflection-format and transmission-format coupler-type diffractive optical elements: theoretical exploration and experimental validation.
    Chakraborty D; Georgiev R; Toal V; Naydenova I; Cody D; Martin S
    Opt Express; 2024 May; 32(11):20385-20400. PubMed ID: 38859151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of axial dispersion in a photopolymer-based holographic lens and its improvement for measuring displacement.
    Liu Y; Liu H; Wang B; Wei M; Li L; Wang W
    Appl Opt; 2020 Sep; 59(27):8279-8284. PubMed ID: 32976413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photopolymer Holographic Lenses for Solar Energy Applications: A Review.
    Alfaro E; Lloret T; Vilardy JM; Bastidas M; Morales-Vidal M; Pascual I
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Properties of Bayfol
    Blanche PA; Mahamat AH; Buoye E
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Photopolymer Materials in Holographic Technologies.
    Vorzobova N; Sokolov P
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31817649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holographic Sensor Based on Bayfol HX200 Commercial Photopolymer for Ethanol and Acetic Acid Detection.
    Potărniche IA; Marín-Sáez J; Collados MV; Atencia J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficiency, low cost holographic optical elements for ultracold atom trapping.
    Tempone-Wiltshire S; Johnstone S; Helmerson K
    Opt Express; 2017 Jan; 25(1):296-304. PubMed ID: 28085823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements.
    Kim JM; Choi BS; Choi YS; Kim JM; Bjelkhagen HI; Phillips NJ
    Appl Opt; 2002 Mar; 41(8):1522-33. PubMed ID: 11928753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications.
    Ingersoll GB; Leger JR
    Appl Opt; 2016 Jul; 55(20):5399-407. PubMed ID: 27409317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic Lenses in an Environment-Friendly Photopolymer.
    Lloret T; Navarro-Fuster V; Ramírez MG; Ortuño M; Neipp C; Beléndez A; Pascual I
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical modeling of the effect of polymer chain immobilization rates on holographic recording in photopolymers.
    Mackey D; O'Reilly P; Naydenova I
    J Opt Soc Am A Opt Image Sci Vis; 2016 May; 33(5):920-9. PubMed ID: 27140889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements.
    Hwang YS; Bruder FK; Fäcke T; Kim SC; Walze G; Hagen R; Kim ES
    Opt Express; 2014 Apr; 22(8):9820-38. PubMed ID: 24787867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffraction efficiency enhancement and optimization in full-color HOE using the inhibition characteristics of the photopolymer.
    Shin CW; Wu HY; Kwon KC; Piao YL; Lee KY; Gil SK; Kim N
    Opt Express; 2021 Jan; 29(2):1175-1187. PubMed ID: 33726338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model.
    Gleeson MR; Sheridan JT; Bruder FK; Rölle T; Berneth H; Weiser MS; Fäcke T
    Opt Express; 2011 Dec; 19(27):26325-42. PubMed ID: 22274217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of shrinkage in photopolymer film on the information transmitted through the holographic waveguide for near eye displays.
    Kaur R; Park JH; Kumar R
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):A15-A24. PubMed ID: 38437419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.