These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29801267)

  • 1. Characterization of selective solar absorber under high vacuum.
    Russo R; Monti M; di Giamberardino F; Palmieri VG
    Opt Express; 2018 May; 26(10):A480-A486. PubMed ID: 29801267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers.
    Chang JY; Taylor S; McBurney R; Ying X; Allu G; Chen YB; Wang L
    iScience; 2021 Jan; 24(1):101899. PubMed ID: 33364587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.
    Mandal J; Wang D; Overvig AC; Shi NN; Paley D; Zangiabadi A; Cheng Q; Barmak K; Yu N; Yang Y
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28845533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance.
    Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L
    Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Spectrally Selective Absorber Using the ZrB
    Wang J; Ren Z; Luo Y; Wu Z; Liu Y; Hou S; Liu X; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40522-40530. PubMed ID: 34407618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular solar absorptance of absorbers used in solar thermal collectors.
    Tesfamichael T; Wäckelgård E
    Appl Opt; 1999 Jul; 38(19):4189-97. PubMed ID: 18323901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability.
    Zhou WX; Shen Y; Hu ET; Zhao Y; Sheng MY; Zheng YX; Wang SY; Lee YP; Wang CZ; Lynch DW; Chen LY
    Opt Express; 2012 Dec; 20(27):28953-62. PubMed ID: 23263136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of optical properties of AISI 304 as a solar absorber using a pulsed fiber laser.
    Chomcharoen N; Muangnapoh T; Traipattanakul B; Surawathanawises K
    RSC Adv; 2023 Jul; 13(32):22281-22286. PubMed ID: 37492503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion.
    Li P; Liu B; Ni Y; Liew KK; Sze J; Chen S; Shen S
    Adv Mater; 2015 Aug; 27(31):4585-91. PubMed ID: 26134928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
    Zhu L; Raman AP; Fan S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidally deposited high-temperature solar selective surfaces.
    Zybert JJ; McKenzie DR
    Appl Opt; 1981 Dec; 20(23):4051-3. PubMed ID: 20372322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar selective coatings based on nickel oxide obtained via spray pyrolysis.
    Voinea M; Ienei E; Bogatu C; Duta A
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4279-84. PubMed ID: 19916443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tungsten-based highly selective solar absorber using simple nanodisk array.
    Han X; He K; He Z; Zhang Z
    Opt Express; 2017 Nov; 25(24):A1072-A1078. PubMed ID: 29220985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the optoelectronic properties of CoSb
    Taranova A; Akbar K; Yusupov K; You S; Polewczyk V; Mauri S; Balliana E; Rosen J; Moras P; Gradone A; Morandi V; Moretti E; Vomiero A
    Nat Commun; 2023 Nov; 14(1):7280. PubMed ID: 37949914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Stable and Sustainable Low-Temperature Selective Absorber: Structural and Ageing Characterisation.
    Farchado M; San Vicente G; Germán N; Maffiotte C; Morales Á
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.