These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29801267)

  • 21. Possible high absorptance and low emittance selective surface for high temperature solar thermal collectors.
    Zhang QC; Kelly JC; Mills DR
    Appl Opt; 1991 May; 30(13):1653-8. PubMed ID: 20700339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of substrate on graphite and other solar selective surfaces.
    McKenzie DR
    Appl Opt; 1978 Jun; 17(12):1884-8. PubMed ID: 20198088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable nano-architecture for stable near-blackbody solar absorption at high temperatures.
    Guo Y; Tsuda K; Hosseini S; Murakami Y; Tricoli A; Coventry J; Lipiński W; Torres JF
    Nat Commun; 2024 Jan; 15(1):384. PubMed ID: 38195671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared spectral emittance profiles of spectrally selective solar absorbing layers at elevated temperatures.
    Soule DE; Smith DW
    Appl Opt; 1977 Nov; 16(11):2818-21. PubMed ID: 20174248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinel Cu-Mn-Cr Oxide Nanoparticle-Pigmented Solar Selective Coatings Maintaining >94% Efficiency at 750 °C.
    Xu C; Wang X; Liu J
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral selectivity of high-temperature solar absorbers.
    Trotter DM; Sievers AJ
    Appl Opt; 1980 Mar; 19(5):711-28. PubMed ID: 20220922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale nanostructured low-temperature solar selective absorber.
    Chi K; Yang L; Liu Z; Gao P; Ye J; He S
    Opt Lett; 2017 May; 42(10):1891-1894. PubMed ID: 28504752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance analysis of the evacuated tube counter-flow absorber and direct-flow absorber to optimize the heat extraction rate for high flow rate applications.
    Tambula S; Musademba D; Chihobo CH
    Heliyon; 2023 Mar; 9(3):e14226. PubMed ID: 36923893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silver nanoparticles with an armor layer embedded in the alumina matrix to form nanocermet thin films with sound thermal stability.
    Gao J; Tu C; Liang L; Zhang H; Zhuge F; Wu L; Cao H; Yu K
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11550-7. PubMed ID: 24980213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New High-Temperature Durable Absorber Material Solution through a Spinel-Type High Solar Absorptivity Coating on Ti
    Wang W; Ye F; Mu W; Dutta J; Laumert B
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):45008-45017. PubMed ID: 34494820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Scale Femtosecond-Laser Texturing for Photothermal Efficiency Enhancement on Solar Absorbers Based on TaB
    Sani E; Sciti D; Failla S; Melandri C; Bellucci A; Orlando S; Trucchi DM
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.
    Lee HJ; Jung DH; Kil TH; Kim SH; Lee KS; Baek SH; Choi WJ; Baik JM
    ACS Appl Mater Interfaces; 2017 May; 9(21):18061-18068. PubMed ID: 28488438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lanthanum hexaboride for solar energy applications.
    Sani E; Mercatelli L; Meucci M; Zoli L; Sciti D
    Sci Rep; 2017 Apr; 7(1):718. PubMed ID: 28386129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.
    Jiang X
    Opt Express; 2010 Apr; 18(9):A112-7. PubMed ID: 20607893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.
    Jiang X
    Opt Express; 2010 Apr; 18 Suppl 1():A112-7. PubMed ID: 20588568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.
    Pang X; Wei Q; Zhou J; Ma H
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29921783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber.
    Selvakumar N; Krupanidhi SB; Barshilia HC
    Adv Mater; 2014 Apr; 26(16):2552-7. PubMed ID: 24474148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superlattice photonic crystal as broadband solar absorber for high temperature operation.
    Rinnerbauer V; Shen Y; Joannopoulos JD; Soljačić M; Schäffler F; Celanovic I
    Opt Express; 2014 Dec; 22 Suppl 7():A1895-906. PubMed ID: 25607503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.