BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 2980127)

  • 1. Diazo-reaction positive substance observed in the cortex of Chattonella antiqua.
    Shimada M; Shimono R; Imahayashi T; Ozaki HH; Murakami TH
    Histol Histopathol; 1986 Oct; 1(4):327-33. PubMed ID: 2980127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical production by the red tide alga, Chattonella antiqua.
    Shimada M; Akagi N; Nakai Y; Goto H; Watanabe M; Watanabe H; Nakanishi M; Yoshimatsu S; Ono C
    Histochem J; 1991 Aug; 23(8):361-5. PubMed ID: 1655681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of superoxide anion in the red tide alga Chattonella antiqua.
    Shimada M; Kawamoto S; Nakatsuka Y; Watanabe M
    J Histochem Cytochem; 1993 Apr; 41(4):507-11. PubMed ID: 8383714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in toxin compositions of two harmful raphidophytes, Chattonella antiqua and Chattonella marina, at different salinities.
    Haque SM; Onoue Y
    Environ Toxicol; 2002; 17(2):113-8. PubMed ID: 11979589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of the polyamines caldopentamine and homocaldopentamine in axenic cultures of the red tide flagellates Chattonella antiqua and Heterosigma akashiwo (Raphidophyceae).
    Nishibori N; Niitsu M; Fujihara S; Sagara T; Nishio S; Imai I
    FEMS Microbiol Lett; 2009 Sep; 298(1):74-8. PubMed ID: 19659728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Chattonella antiqua on the swimming behavior and brain monoamine metabolism of juvenile yellowtail (Seriola quinqueradiata).
    Qiu X; Matsuyama Y; Furuse M; Shimasaki Y; Oshima Y
    Mar Pollut Bull; 2020 Mar; 152():110896. PubMed ID: 31957673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative studies on the fish-killing activities of Chattonella marina isolated in 1985 and Chattonella antiqua isolated in 2010, and their possible toxic factors.
    Cho K; Sakamoto J; Noda T; Nishiguchi T; Ueno M; Yamasaki Y; Yagi M; Kim D; Oda T
    Biosci Biotechnol Biochem; 2016; 80(4):811-7. PubMed ID: 26654750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina.
    Kuroda A; Nakashima T; Yamaguchi K; Oda T
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 Jul; 141(3):297-305. PubMed ID: 16098818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular secretion of superoxide is regulated by photosynthetic electron transport in the noxious red-tide-forming raphidophyte Chattonella antiqua.
    Yuasa K; Shikata T; Kitatsuji S; Yamasaki Y; Nishiyama Y
    J Photochem Photobiol B; 2020 Apr; 205():111839. PubMed ID: 32146272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of ribosomal RNA gene of red tide algae obtained from the seto inland sea.
    Hirashita T; Ichimi K; Montani S; Nomura M; Tajima S
    Mar Biotechnol (NY); 2000 May; 2(3):267-73. PubMed ID: 10852806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid phosphatase associated with discharging secretory vesicles (mucocysts) of Tetrahymena thermophila.
    Tiedtke A; Görtz HD
    Eur J Cell Biol; 1983 May; 30(2):254-7. PubMed ID: 11596499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient deficiency stimulates the production of superoxide in the noxious red-tide-forming raphidophyte Chattonella antiqua.
    Yuasa K; Shikata T; Ichikawa T; Tamura Y; Nishiyama Y
    Harmful Algae; 2020 Nov; 99():101938. PubMed ID: 33218451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved protonation, collision-induced decomposition efficiency and structural assessment for 'red tide' brevetoxins employing nanoelectrospray mass spectrometry.
    Wang W; Cole RB
    J Mass Spectrom; 2006 Aug; 41(8):996-1005. PubMed ID: 16830355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq Analysis Reveals Genes Related to Photoreception, Nutrient Uptake, and Toxicity in a Noxious Red-Tide Raphidophyte
    Shikata T; Takahashi F; Nishide H; Shigenobu S; Kamei Y; Sakamoto S; Yuasa K; Nishiyama Y; Yamasaki Y; Uchiyama I
    Front Microbiol; 2019; 10():1764. PubMed ID: 31417538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis.
    Chan LL; Lo SC; Hodgkiss IJ
    Proteomics; 2002 Sep; 2(9):1169-86. PubMed ID: 12362335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum.
    Du Yoo Y; Jeong HJ; Kim MS; Kang NS; Song JY; Shin W; Kim KY; Lee K
    J Eukaryot Microbiol; 2009; 56(5):413-20. PubMed ID: 19737193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sensitivity of methods for determining nitrites].
    Kal'tianis PA; Batavichene AP
    Lab Delo; 1982; (3):27-8. PubMed ID: 6176762
    [No Abstract]   [Full Text] [Related]  

  • 18. [NO2-/NO3- levels in blood and principal organs in rats treated with lipopolysaccharide].
    Sakemi K; Ohno Y; Tsuda M
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1998; (116):101-6. PubMed ID: 10097517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histochemical analysis of glycoproteins in the secretory cells in the gill epithelium of a catfish, Rita rita (Siluriformes, Bagridae).
    Kumari U; Yashpal M; Mittal S; Mittal AK
    Tissue Cell; 2009 Aug; 41(4):271-80. PubMed ID: 19233444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive method for the analysis of nitrite ions by capillary zone electrophoresis using water-soluble aminophenylporphyrin derivative as chromogenic reagent.
    Andrighetto P; Carofiglio T; Fornasier R; Tonellato U
    Electrophoresis; 2000 Jul; 21(12):2384-9. PubMed ID: 10939449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.