These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29801324)

  • 1. On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement.
    Fang WT; Li YH; Zhou ZY; Xu LX; Guo GC; Shi BS
    Opt Express; 2018 May; 26(10):12912-12921. PubMed ID: 29801324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip.
    Li YH; Fang WT; Zhou ZY; Liu SL; Liu SK; Xu ZH; Yang C; Li Y; Xu LX; Guo GC; Shi BS
    Opt Express; 2018 Oct; 26(22):28429-28440. PubMed ID: 30470014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons.
    Kang D; Anirban A; Helmy AS
    Opt Express; 2016 Jun; 24(13):15160-70. PubMed ID: 27410667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated silicon nitride time-bin entanglement circuits.
    Zhang X; Bell BA; Mahendra A; Xiong C; Leong PHW; Eggleton BJ
    Opt Lett; 2018 Aug; 43(15):3469-3472. PubMed ID: 30067687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion.
    Kaneda F; Suzuki H; Shimizu R; Edamatsu K
    Opt Express; 2019 Jan; 27(2):1416-1424. PubMed ID: 30696207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active temporal multiplexing of indistinguishable heralded single photons.
    Xiong C; Zhang X; Liu Z; Collins MJ; Mahendra A; Helt LG; Steel MJ; Choi DY; Chae CJ; Leong PH; Eggleton BJ
    Nat Commun; 2016 Mar; 7():10853. PubMed ID: 26996317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator.
    Imany P; Jaramillo-Villegas JA; Odele OD; Han K; Leaird DE; Lukens JM; Lougovski P; Qi M; Weiner AM
    Opt Express; 2018 Jan; 26(2):1825-1840. PubMed ID: 29401906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator.
    Fujiwara M; Wakabayashi R; Sasaki M; Takeoka M
    Opt Express; 2017 Feb; 25(4):3445-3453. PubMed ID: 28241558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses.
    Zhang X; Jizan I; He J; Clark AS; Choi DY; Chae CJ; Eggleton BJ; Xiong C
    Opt Lett; 2015 Jun; 40(11):2489-92. PubMed ID: 26030539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits.
    Jin H; Liu FM; Xu P; Xia JL; Zhong ML; Yuan Y; Zhou JW; Gong YX; Wang W; Zhu SN
    Phys Rev Lett; 2014 Sep; 113(10):103601. PubMed ID: 25238358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip generation of high-dimensional entangled quantum states and their coherent control.
    Kues M; Reimer C; Roztocki P; Cortés LR; Sciara S; Wetzel B; Zhang Y; Cino A; Chu ST; Little BE; Moss DJ; Caspani L; Azaña J; Morandotti R
    Nature; 2017 Jun; 546(7660):622-626. PubMed ID: 28658228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entangled photon pair generation in an integrated SiC platform.
    Rahmouni A; Wang R; Li J; Tang X; Gerrits T; Slattery O; Li Q; Ma L
    Light Sci Appl; 2024 May; 13(1):110. PubMed ID: 38724516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum entanglement and interference at 3 μm.
    Ge Z; Han ZQ; Yang F; Wang XH; Li YH; Li Y; Gao MY; Chen RH; Niu SJ; Xie MY; Zhou ZY; Shi BS
    Sci Adv; 2024 Mar; 10(10):eadm7565. PubMed ID: 38446887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference.
    Chen Y; Ecker S; Wengerowsky S; Bulla L; Joshi SK; Steinlechner F; Ursin R
    Phys Rev Lett; 2018 Nov; 121(20):200502. PubMed ID: 30500221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasible time-bin entanglement purification based on sum-frequency generation.
    Yan PS; Zhou L; Zhong W; Sheng YB
    Opt Express; 2021 Jan; 29(2):571-583. PubMed ID: 33726290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of highly stable WDM time-bin entanglement by cascaded sum-frequency generation and spontaneous parametric downconversion in a PPLN waveguide device.
    Arahira S; Murai H; Sasaki H
    Opt Express; 2016 Aug; 24(17):19581-91. PubMed ID: 27557236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-bin entangled photons from a quantum dot.
    Jayakumar H; Predojević A; Kauten T; Huber T; Solomon GS; Weihs G
    Nat Commun; 2014 Jun; 5():4251. PubMed ID: 24968024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entangled photons from on-chip slow light.
    Takesue H; Matsuda N; Kuramochi E; Notomi M
    Sci Rep; 2014 Jan; 4():3913. PubMed ID: 24468821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
    Li Y; Zhou ZY; Ding DS; Shi BS
    Opt Express; 2015 Nov; 23(22):28792-800. PubMed ID: 26561148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.