These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29801451)

  • 21. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons.
    Koller JR; Gates DH; Ferris DP; Remy CD
    J Appl Physiol (1985); 2017 Feb; 122(2):242-252. PubMed ID: 27856717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW; Dembia CL; Delp SL; Collins SH
    J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking.
    Peng X; Acosta-Sojo Y; Wu MI; Stirling L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locomotor adaptation to a powered ankle-foot orthosis depends on control method.
    Cain SM; Gordon KE; Ferris DP
    J Neuroeng Rehabil; 2007 Dec; 4():48. PubMed ID: 18154649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 May; 43(7):1401-7. PubMed ID: 20171638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.
    Kinnaird CR; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):31-7. PubMed ID: 19211321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users.
    Moltedo M; Baček T; Serrien B; Langlois K; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    J Neuroeng Rehabil; 2020 Jul; 17(1):98. PubMed ID: 32680539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Ankle Exoskeleton Assistance Affects the Mechanics of Incline Walking and Stair Ascent in Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A PID Controller Approach to Explain Human Ankle Biomechanics across Walking Speeds.
    Herve O; Martin A; Villarreal DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2420-2423. PubMed ID: 31946387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ; Lewek MD; Sawicki GS
    J Neuroeng Rehabil; 2015 Feb; 12():23. PubMed ID: 25889283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of a powered ankle-foot orthosis on perturbed standing balance.
    Emmens AR; van Asseldonk EHF; van der Kooij H
    J Neuroeng Rehabil; 2018 Jun; 15(1):50. PubMed ID: 29914505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of human walking for exoskeletal support.
    van Dijk W; van der Kooij H; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650394. PubMed ID: 24187213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.